MATHEMATICAL NOTES- Constraints Theory (Draft 4)
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This mathematical discussion is in terms of scalar Hamiltonians for Classical
Mechanics (CM) [14], [15] and Hermitian symmetric operator Hamiltonians for Quantum
Mechanics (QM); these Hamiltonians are, ostensibly, independent of time. This avoids
the complexities of the path integral method but restricts the argument to simple, isolated
systems composed of particles that do not change or lose their identity. The discussion is
thereby restricted to quantum systems that have a classical counterpart.

We begin with a classical archetype of point particles moving in a space P about
which nothing is specified other than that it is continuous. The system of particles is
associated with one or more functions 0 of the coordinates g . The function or functions

0 is/ are assumed to be continuous and differentiable; and the coordinates are assumed to
be continuous, differentiable functions of a single time measure ¢. It is possible to derive,
from 0, an infinite set of scalar differential identities. From each of these an operator
relation can be derived by a process of quantization. This process treats the scalar
identities as if they were equations of motion. But the operator relations, called
constraints, turn out not to be identities. As a consequence of the rules of quantization an
operator analogue of Hamilton’s equations holds.

These notes are concerned with the mathematical consequences of the constraints
and their implications, if any, for physics. Typical of the questions asked are: Do the
constraints apply to classical physics, quantum physics or both? What is the physical
significance of the hierarchy of constraints? If, as appears likely, the constraints apply,
principally, to classical physics can we recognise the laws of classical physics among
their patterns? If so are there deviations, from the cannon laws, that might be interpreted
as new physics? Are there internal inconsistencies in the constraints? Is it necessary to
consider the whole of the infinite hierarchy of constraints, to describe classical physics,
or 1s it sufficient to consider only a few of them? How reliable is our chosen method of
quantization?

In summary: The constraints are shown to be related to the assumptions of
continuity and differentiability that are necessary to derive the differential identities. The
order of the derivatives in an identity fixes the position of the corresponding constraint in



the hierarchy. Thus, the higher the level at which all the constraints are satisfied, the
closer the operator description is to a classical ideal.

Given that 0 is arbitrary the first constraint requires that the operator Hamiltonian
is quadratic in the operators that are conjugate to the coordinate operators; this justifies
reference to the former set as ‘momenta’. The second constraint, when combined with the
first, produces what looks like an operator field equation involving the operator © that
represents 0 ; this is called the Operator Theta Equation. Functions of the coordinate
operators that appear in the Hamiltonian form are candidates for © . In order that the
spectra of coordinate velocities shall be continuous ® cannot be a matrix; and it is this
condition that ties the pattern of constraints to the laws of classical physics. It further
appears that the first two constraints, only, are needed to describe the situations to which
classical mechanics applies. We do not, however, have a definite theorem to this effect.

Reverse quantization of the general quadratic operator Hamiltonian and of the
theta equation, produces recognisable expressions that belong to classical mechanics;
these are called the Scalar Hamiltonian and the Scalar Theta Equation respectively. It is
to be noted that, while the solutions of most conventional field equations satisfy
appropriate versions of the scalar theta equation, not all solutions of that equation satisfy
conventional equations. The reason is that the scalar theta equation, considered as a PDE,
is of fourth order; new, or at any rate extra, physics is to be expected. The scalar
Hamiltonian satisfies the classical Hamilton’s equations.

Arbitrary functions of the coordinates g*" = g™ appear as coefficients of the
second order terms in the general scalar Hamiltonian. Hamilton’s equations are
recognisable as the generalised geodesic equations, with metric tensor g = g™, of an
higher dimension Riemannian space C. The coordinates of C are the aggregate g of the

coordinates of all the particles contained in P. In consequence P is Riemannian; (C may
be made to reduce to P under special circumstances). The geodesic equations, referred to
C, describe the motion of a single representative point Q in C and, in consequence, the
motions of all the particles in P.

Also, in the scalar Hamiltonian form, are arbitrary functions that, in ordinary
physical space, would be described as gauge potentials. The rules of quantization require
that P is flat and that the particle coordinates are orthogonal for each particle and flat; it
follows that C is flat with flat coordinates.

Now consider a Riemannian space C' that is of the same dimension as C and may
be curved with curvilinear coordinates x . Suppose that C' is tangential to C at the point Q

in C, with coordinates g, and at the point X in C’ with coordinates x . Suppose also that
the x are geodesic with pole X. Then, at the pole, we may choose dg =dx and the

functions g* may also be chosen as the metric tensor of C' with geodesic coordinates x .



We now drop the prime on C' and assume that C may be curved; in the text we use the
notation g for coordinates when C is flat and x for coordinates when C is curved.

The question then arises: Which tensor equation, with metric tensor g = g™,

reduces to the scalar theta equation when the coordinates are geodesic? The answer is the
Kilmister Equation referred to here as the K equation. Notice that the K equation is not a
quantum equation. It derives, ultimately, from a reverse quantisation of an operator
Hamiltonian; it is, therefore classical. Various properties of C and the K equation can be
deduced analytically. For example: the original time measure ¢ is a geodesic distance in
C; if the Ricci tensor of C vanishes then, the K equation is also satisfied, but there are
solutions of the Kilmister equation for which the Ricci tensor is non-zero; when either the
Ricci or Kilmister tensors vanish the dimension of C must be at least four for the space to
be curved; because, in CT, it is axiomatic that each particle has only one time coordinate
the remainder are space-like.

When the dimension of C is four, and there is only one particle in P, the K
equation makes contact with General Relativity (GR). The resulting relativistic K
equation makes no mention of matter; it is a set of up to ten PDEs that, given four sets of
boundary conditions, describe the evolution of the metric tensor of C. Thus, through
Einstein’s equation, it describes a possible evolution of the matter-energy-momentum-

stress tensor 7, . In the classical archetype, with which CT begins, the space between

particles, in P, is assumed empty; but there seems to be no barrier to assuming that 7"

describes a continuum. Notice that if space-time is truly empty then the relativistic K
equation requires that Einstein’s cosmological constant A is zero. Thus we are gambling;
either the K equation describes the real world, at a classical level, or it does not!

The relativistic K equation is much more complicated than the Einstein equation.
Detailed conclusions have only been deduced either by approximate analytic arguments,
which assume low velocities and low curvature, or by machine calculations most of
which are approximate in other ways.

The results of machine calculations can be summarised as follows: Analytic
formulae are confirmed. With the cosmological metric (corresponding to an
homogeneous, isotropic space-time) two unique and exact solutions are obtained; but
they represent empty model universes. Various perturbations of these exact solutions
represent model universes which are considered to be well expanded, contain uniform,
low density distributions of matter-energy and have roughly constant Hubble parameters.
All these model universes, once expanding, continue so to do.

We have modified the cosmological metric so that it is possible for it to describe
weak gravity as a local perturbation. One class of these perturbation solutions expands at
an almost constant rate, does not permit Newtonian gravity and may represent an early
phase when the universe was filled only with radiation. The other class expands at a
much lower rate, permits Newtonian gravity and has a matter-energy density p which is



a sum of two terms p, and p,,. The term p, is the square of a real and so is positive. The
term p,, can have either sign and arises because the K equation is of fourth order. The
term p, is interpreted as ordinary mass density possibly including Dark Matter. The term
Poo 18 interpreted as a vacuum energy; if p,, <0 it could be an explanation of the Dark

Energy effect. Note that the condensation of matter from an high density radiation field is
a quantum phenomenon and thus outwith the competence of the K equation.

These machine solutions represent the local behaviour (less than 10° parsecs say)
of well-expanded model universes; thus, if they have relevance to the actual universe, it
cannot be to a very early phase. The cosmological metric is probably inappropriate to
such a phase. So, in order to explore solutions of the K equation that might represent the
early universe, we would need to choose a metrical form of an inhomogeneous,
anisotropic space. This is an impediment to further progress.

We have studied flat or nearly flat spaces C by various means. Suppose that two
particles in an E3 move, in a scalar potential w, under Newtonian mechanics. Let the
coordinates be Cartesian so that P is E3 with a unit diagonal metric. By writing out the
classical Hamiltonian we see that C is a scaled E6 with a constant, diagonal metric. The
potential w is the only candidate for 8. The theta equation is therefore a PDE for the
scalar potential w. According to Einstein ® must be an invariant in P. The theta equation
then reduces to

where [ is the distance between the particles. It follows that the only valid solution is
c : :
02) o= 71 +c,l’+cl+c,; c¢,....,c, are constants of integration

The ¢, /1 term gives an inverse square force along the line joining the particles; c,
defines an arbitrary potential floor. The term ¢,I” + ¢,/ arises because the theta equation

is of fourth order. It may be new physics; but to have evaded experimental detection it
must be either very small, at laboratory distances, or the constants ¢, and ¢, must be

zero. Notice that the above argument gives no clue as to whether  is an electrostatic
potential or a weak gravitational potential.

The generalisation of this argument considers n, >2 particles moving in a scalar
field w in E3. P is an E3 and C, given Cartesian coordinates, is a scaled E3n,. Again o

is the only candidate for 0, is governed by the theta equation and must be an invariant in
P. The theta equation, in this general case, is very much more complicated involving the



distances I . =1, between the o and B” particles in P. For example when n_ =3 the
afy Bo I) I) P
theta equation reduces to
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(0.4)  2L,L; cos @y, = 1221 + 1321 _1322
It is obvious that
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is a particular solution of (0.3). This solution contains only terms that give the expected
inverse square forces. But the general solution contains cross-terms. Provided that the
only singularities are first order these cross-terms are contained in the regular part of the
solution (0.5); and that is dominated by the singular part when the distances are small
enough.

A more complicated calculation, in the n, =2 case, assumes that C is slightly

curved and invokes the K equation to see what happens to the two particles. In order to
allow comparison with previous calculations is assumed that the motions can be
described, at least approximately, by a scalar potential w. C has 8 dimensions and
approximates a double Minkowski space. We connect w to the metric tensor via the
equations of motion in C (the geodesic equation and those involving derivatives of w).
We then express the Ricci tensor in terms of the derivatives of @ and approximate the K
equation. The result is the same PDE as is obtained with the flat-space E6 Newtonian
argument; it reduces to (0.1). This demonstration supports the notion that in order, at the
least, to describe gravity C must be curved.

We have also studied the impact of CT on classical EM theory. The general
quadratic scalar Hamiltonian, which is obtained from constraint 1, is compared with the
classical Special Relativity (SR) Hamiltonian for a single charged particle moving in an
EM field; C=P is chosen to be Minkowskian. The coefficients of the square terms in the
CT Hamiltonian compare with those of the EM Hamiltonian; further, the coefficients of
the linear terms in the CT Hamiltonian are related directly to the EM vector and scalar
potentials.

CT has no impact on classical EM theory provided that the space between point,
charged particles in P is considered empty. If a cloud of charged particles in P is



represented, instead, by a charge density p and a current vector i then p and the
components of i are subject to the wave equation.

As we climb the hierarchy of constraints their complexity increases hyper-
exponentially. It is therefore very difficult to produce general theorems concerning their
structure. This text contains some simple deductions. Irrespective of 6 linear operator
Hamiltonians, with constant scalar coefficients, satisfy all the constraints. The quadratic
operator Hamiltonian P*/m , where P is a Cartesian momentum and m is a scalar, also
satisfies all the constraints given that 0 satisfies the theta equation. The quadratic form

\ 2. -
0.6) Hs= 281.1.13]. ; g, ==l
Jj=

satisfies the constraints up to at least level 4 providing that 8 satisfies the theta equation.



1. The Particle Space P - Differential Identities

We begin with a classical model of structureless point particles moving in a
continuous space P. The coordinates ¢ ={g',¢°,...q", n, =n,n,}, where n, is the
number of particles and n, the dimension of the space, are functions of a continuous time
measure ¢ ; this measure is the time of the consciousness and the clock of a single
observer [19]. We write an hierarchy of differential identities for 9,@,...; 0=do/dt
where 6(g) is any function of the coordinates characteristic of the model (e.g., a scalar

potential, an element of a vector potential, an element of the fundamental tensor, a
curvilinear coordinate). These are the scalar identities mentioned above. Note that the
coordinates are numbered by superfixes in order to implement the Einstein summation
convention [20].

Given a function 6(q) of the coordinates g(¢) the first four of the infinite

hierarchy of differential identities are:

. de , 00
L) 6=—=4¢'6,; 6,=—
( ) dt q 5] 5] aq]
. . 0’0
. <ok . —
(12) 0=40,+4'"0,5 0, =7 7

(13) 6=547'0,+3G'¢"0 , +4’¢"¢'0 ,;;

0=4'0, +(44'q’" +3G'G7)0, +6G'¢'4"0 ; +d'q’ 4" 4’0 s

i,j,k,0=12,.n = ngn,

(1.4)

The Einstein summation convention is in force; and, unless otherwise stated, all indices
lie in the range [/,n.]. Observe that the identities increase in complexity, very fast, as the

order of the time derivative of 6 rises. Kauffman has devised a recursive formula for the
general case. This formula may be suitable for computer calculations.

2. Quantization

We quantize the identities by substituting Hermitian symmetrical operators, for
scalar observables, according to the method of Schrodinger. The resulting expressions are
then subject to non-commuting algebras [13], [21] which have application to both physics
and mathematics.

The quantization rules require that P is Riemannian flat and that the coordinates
g are also flat (the coordinates of a single particle are local Cartesian at every point in



the space). It may be that these last two rules are not essential; but they turn out to be
consistent with all that can be deduced from the other quantization rules.

2.1 Notations

Observables (denoted lower case) are represented by operators (denoted upper
case). The only exception to this rule is the Hamiltonian which is always denoted upper
case; the context indicates whether the CM scalar or QM operator is intended. If the
observables are real then the operators have Hermitian symmetry and hence real spectra.

Q1) a—d a=C =y ALY
d

where '—' means ‘is represented by the operator’.

(2.2a) [4,B]=AB-B4; |A.B|=—[4,B]

£
h
[4,B,C]=[4,[B,C]]; [4,B,C,D]=[A4,[B,C,D]];

G2\ 4B.Cl=|A|B.ClE |4.B.C.D|=|4.|B.C.D)

(23) p,—P; ¢ =0 A,.,-E[P,-,AJ A:"E[AanJ

24) U A d f= N 44,4,

perm

where the commas on the LHS are inserted, if need be, only for clarity. The order of the
arguments in {} is immaterial. Notice that if an element inside any of the brackets
L], | {} is null then the bracket is null.

We combine these notations with the Einstein summation convention in a manner
illustrated by the following examples:

aalen b Slenr-sra) ea -Llr.o]
u=l1

perm

(2.4b) 4™, 474 }— (EAWA;;ZA)

where, in this example and for simplicity, 4 happens to be an invariant.



2.2 Schrodinger’s Rules For Quantization

Schrodinger begins with a classical energy equation that expresses the total
energy of a single particle system (the electron in the hydrogen atom) as the sum of its
kinetic and potential energies

(2.5) e= %(pf + i +D; )+ v(¢) ; Newtonian approximation
" 4

He then replaces the scalars (energy e, Cartesian components of momentum p,, p,, p;,
Cartesian coordinates ¢,,q,,q, and the potential energy v(q) ) by Hermitian symmetric

operators

(2.6) EEHEL(PI2 +P +Pf)+V(Q)
2m -

In the Schrodinger coordinate representation (Q-diagonal) these operators are

E=H=ih": P=-ih-"r 0'=¢'I=V(Q)=vg]
(2.7) ot aq’ -~

_OO<pJ<OO’ —OO<qk<OO

where [ is the unit operator and the mass m is taken as a c-number. He allows the first
expression (2.7) to act on a wave function {(q,#) regarded as a vector in an Hilbert

space. The assumption that ¢ is a scalar that commutes with all operators produces a PDE
which can be solved for the function y(g,?) . The result is the Schrodinger Evolution.

2.8) ih aw(% 2

P = HIP(Qe t) = w(gs t) = eXp(—lHt/h)W(gaO)

By substituting (2.6/7) on the RHS of the PDE he gets his famous wave equation

(g, 2
2.9) in w% t)=(—h—v +v(g))1p(g,t)

2m

2.3 Multiples, Powers, Sums And Products

From Schrodinger’s rules we deduce the following generalizations: Suppose that

(2.10) a—4; b—B



where a,b are real, scalar observables and A4, B are their representative operators. Then
for multiples, integer powers, sums (weighted by c-numbers o, 3 ) and products

(2.11) aa™ = ad™; aa+pPb—=>04+pB; ab—(AB+BA)/2; m=12,... [4]

whether or not 4 and B commute. From these formulae Kauffman deduces

(2.12) iajaj —>2 oAy @aya, = LN Ady 4, =4, 4., 4,} [Kauffman]
J= J=

perm

whether or not the 4, mutually commute. Notice how, at (2.4a/b), this last formula may

be combined with the summation convention.
2.4 Coordinates And Momenta

It follows from (2.7) that, in symbols,
(2.13) PR =PP; Q'0°=0'0'; O'B-PQ’'=indl; jk=123

We assume, in addition, that these relations hold for all the coordinates of all the particles
in P. That is

(2.14) j,k=12,..n

c

This assumption takes us beyond Schrodinger’s original rules; but it has been successful
in models of multi-electron atoms.

Suppose that the operator Q7 has a continuous spectrum in the range [—o,]; see

(2.7). Then it can be proved that, if P, satisfies (2.13) then, P, is also an operator with a

continuous spectrum in the range [-,%]; so O’ always has such a conjugate. What
Justification have we to call P, a momentum operator representing a classical component

of momentum? At this stage in the argument, none, save the success of Schrodinger’s
wave equation. Later we shall produce a more cogent argument.

2.5 The Schrodinger Representations And Time

In the Schrodinger representation the operators are independent of the time. From
the rules so far given we can generalize as follows:

In the Q-diagonal Schrodinger representation

(2.152) ¢’ = Q' =q'I; a(g) — A(Q)=a(q)l; -o<gq’ <®; I is theunit operator

10



(2.15b) p, — P, = —ih—

a";

b(p) — B(P) =b(P)

In the P-diagonal Schrodinger representation

(2.16a) p’ — P’ = p'I; b(p) = B(P)=b(p)l; - <p;<oo; [ isthe unit operator
)

(2.16b) g, = O, = lhapj; a(q) = A(Q) = a(Q)

Notice that in this representation the symbols P,Q still satisfy (2.13) as they should. The

connection between the Q-diagonal and P-diagonal Schrodinger representations is the
multivariate Fourier transform.

Time is treated according to the rule
(2.17) a—>A=|H,A|
2.6 The Heisenberg Representation And Time

In the Schrodinger representations the operators are independent of time and the
state vectors depend on time. In the Heisenberg representations the operators depend on

time and the state vectors are independent of time. The connection between a Schrédinger
operator 4 and the corresponding Heisenberg operator A(¢) is

(2.18) A(t)=U"(t)AU(t); U(t)=exp(-iHt/h); '+' denotes Hermitian transpose
By differentiating (2.18) we get an Heisenberg representation of a

(2.19) A(r) = |H,A@®) |=U"()|H, AJU(t); H(t)=H; see (2.17)

This is consistent with (2.17) because

2200 U U@ =UU (t)=1I;, I(t)=1

or by setting ¢ =0 in (2.19) justas 4 = A(0).

2.7 Derivatives With Respect To Coordinates And Momenta

Suppose that the operator 4 is a multinomial in the operators P,Q . What are the

rules for calculating (see (2.2a))

221) 4, = |_Pj,AJEé(PjA—APj); A* = I_A,Q"JE%(AQ"—Q"A)?

11



It can be shown that the rules can be summarized in the statements

4 A* _%

222) 4,=—; _
90 0P,

asif 4,4, A*,Q’, P, are scalars providing that the order of non-commuting operators is
preserved; see (2.13). Now suppose that A4 is pure in the P ; that is, none of the O

appear in the expression for 4. Then we deduce that A4” is pure in the P and is
structured like the scalar partial derivative because all the terms in 4* commute

IA(P)

(2.23a) A*(P) = s

Similarly, if 4 is pure in the Q then 4 is pure in the O and is structured like the scalar

partial derivative because all the terms in 4; commute

o)
(:)Q./

(2.23b) 4,(0) =

Finally, if 4 is pure (either in the P or the Q) then, it can be proved, that the results

(2.23) apply even when A is not a multinomial. It is necessary for the scalar partial
derivatives da(p)/dp; or da(q)/ dq’ , where a — A, to exist. Kauffman calls

commutators like (2.21) derivations.

Notice that

(223C) A,j,k = A,k,j; A:j:k — A:k:j

are identities for any operator A4 . In particular, if 4 is pure in the P then,

2 2
d°a d°a .

= a
dp;9p, 9P, 9p;

(223d) AT = gk :>a:jk =

using the P-diagonal Schrodinger representation and , if 4 is pure in the O then,

d%a 9%a
A

(223¢) A, =A, =a,= = =
. ! ¥ dq,9q, 99,99

using the Q-diagonal Schrodinger representation.

12



Now, by definition,
(2.24) 6(q) = 6(Q)
where © is pure in the Q. It follows that

5 see(1.1....4) and (2.23b)

i,
where, from (2.23c/.../e), the order of the suffices is immaterial. For example
(2.25a) curl® =0 — curl® = O

are both identities.

2.8 Quantization Of The Differential Identities

We now have all the rules needed to quantize the differential identities (1.1....4).
The quantizations of the first four identities, using the notations of Section 2.1, are:

(2.26) Z,=¥1".0, |=|H.0|
(2.27) Z, = {H,H’/ le, f {7 H* 0, |- |H.H.0)|

Z, = {H,H,H”JQ e 3{H,Hff |#*.e,, F HY HL

(2.28)
= |H.H,H,0|

Z,=\H.H.H.H" |0, 4. 0.0 |10, 3 {H 0 ||HH |6,
(229) +6{H.H' |, 040, ,, W H B H O, |
- |H,H,H,H,0|

where, in particular, the operators (expressed in the Q-diagonal Schrodinger
representation)

(230) ©(Q)=6(¢)]; ©,=0,; ©,,=6,1; ©,,,=0,I etc.

are pure in the Q. The Z, are defined as the LHSs of the quantizations written in the

above form; they are used below.
2.9 Apparent Ambiguity And Its Resolution- The First Quantization

The identity (1.1) is the sum of two-term products on the RHS

13



(2.31) 6=4'6,
So the RHS of its quantization
g \
(2.32) |H.0|= 7.0, ] see(2.26)

is, in our notation, the two-term curly bracket with its implied summation. This simple
structure arises because we do not enquire as to the form of the Hamiltonian either as a
classical scalar with

(2.33) ¢/ = gﬂ

j
or as an Hermitian operator with
(2.34) Q' =HY
Suppose, for example, that we choose the general quadratic form
(2.352) H = G (Q),B,, P, f+ ¥/ (Q), P, 4 V(Q); G" =G™; G",F’,V Hermitian
with a reverse quantization
(2.35b) H = g"(q)p,p, + [ (@)p, +v(9)

Scalar (2.35b) is the classical analogue of operator (2.35a). If we quantize (2.35b) we
should get (2.35a). But there may be ambiguity. For we might quantize (2.35b) as

(2.35¢) H = G (Q),B,P, j+ ¥'(Q), P, f+V(Q); the P, mutually commute

regarding p, p, as a single scalar. But the operator t"”,PM , ijl may differ from the
operator JQ”V,B,PV Jl We can analyse this situation as follows: According to the rules
(2.4b/12) product

(2.36) abc —>{4,B,C}= %[ABC+ ACB +BAC + BCA + CAB + CBA |

where a,b,c are real scalars and A4, B,C are Hermitian operators. But if

(2.37) AB = BA, AC = CA, BC = CB, (AB)C = C(AB)

14



then we might say

(2.38) (ab)c — {4B,C}

For this to be consistent with (2.36/37)
1

(2.39) 6
— A(CB-BC)=CAB - BCA

[24BC + ACB + BCA+2CAB]- %[ABC +CAB]

As a general result (2.39) looks most unpromising; but, if we apply it to (2.35a/c), we
find that

(2.40) §",P,P, j= ", PP, }; summed
only if

(2.41) —ZEG’ZV =G"PP -PG"P,; summed; see (2.39)
i

But this is an identity; see Section 2.7. So (2.40) is always true and it does not matter
which of the quantizations (2.35a/c) we arrive at from (2.35b).

Returning to the quantization (2.31/32): we note that with the classical
Hamiltonian (2.35b) we have

QA 4 =2, + [

J

with quantization
(2.426) 07 =2GY, P, j+ F

Alternatively, with the operator Hamiltonian (2.35¢), we may use the rules of Section 2.7
to arrive directly at

(242¢) 07 = HY = 26", P, j+ F; see (2.34).
Given (2.42a) the identity (2.31) becomes
2432 6=4'0 , = @g"p, + 1 D,

with quantization

15



(2.43b) |H,0 |= 2P ,.G",P, [+ ¥/.,0 |
Applying (2.39)
(2.440) P ,.G". P, |- P ,G".P, |

only if
(2.440) G = PO G -G'P® |
1

which turns out to be an identity. But it also turns out that, given (2.42c¢), the last equation

(2.45) @:jﬂe),.f JL= {Z{W’Pu }‘* F'.0, }= zb,jGuj’Pu }+ %j’@)ﬂl

is an identity. Thus the quantization (2.31/32) is consistent with (2.35a/c), (2.42b/c) and
(2.43a/b) however arrived at; (i.e., either by quantizing classical expressions or by
applying operator algebra according to the above rules).

We have shown that, given the quadratic Hamiltonians (2.35a/c), apparent
ambiguities, associated with the simplest quantization (2.26), are illusory. We must
always keep in mind, however, the possibility that the higher level quantizations (2.27) et
seq. might be either ambiguous or inconsistent.

2.10 Poisson Brackets- An Alternative Method Of Quantization

Suppose that f(p,qg,¢) is a classical dynamical variable associated with the
system of particles in P. Then
f = ipl + i -k +i

w4
dp, * 9q ot . o
' ; summation convention in force; j,k=12,...n
_of aH_af 8H+%

S aq" ap, ap, aq’ ot

(2.46)

c

where H is the classical Hamiltonian. The quantity

of oH _of oH

247) PB(f,H)= 4
QA7) PR HY = e

=-PB(H, f)

is called the Poisson Bracket of f and H [5, p. 86]. Quantizing (2.47) by the rules of
Sections 2.2/.../7, on the assumption that f does not depend explicitly on ¢,
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(2.480) [F,H= ¥ H* - ¥ H |

where H is now the QM Hamiltonian operator and

(2.48b) f = F; PB(f,H)— |'F,H'|; definition

On the further assumption that f(g) — F(Q) is pure in the ¢ — 0
(2.492) F = 0= [F,H]= ¥, . H" |: see (2.48a)

Thus, if (2.26) is satisfied for 6 = f then,

(2.49b) |'F,H'| = |_H,FJ

That is the operator |'F JH '|, corresponding to the classical Poisson bracket PB(f,H), is
equal to the QM commutator |H, F |.

More generally, if x(p,g,t) and y(p,q,?) are any two classical dynamical

variables then, the quantity

(2.50) PB(x,y)=-X @ 0 0

dq" op, Ip, dq’

is called the Poisson Bracket (PB) of x and y [5, p. 86]. Dirac [1, p. 85] asserts that if
(2.51) x—=X; y—Y, PB(x,y)— |'X,Y'|; definition

then

(2.52) |'X,Y'| = |_Y,XJ; see (2.49)

as a general proposition. Now if

(2.53a) x=p; y=4q"

then

(2.53b) PB(x,y) =9,

So, according to (2.52),
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(2.54) [P0 ] -|P. Q" |- =81 : see (2.13)

which is the correct quantization of (2.53b) according to (2.13). Similarly we obtain the
rest of the rules (2.13) by applying (2.52).

With n, =3 we can define the familiar components of classical angular
momentum

(2.552) L =q°p;~¢’pys L=a’p~q'py; L=¢'p,~q’p;: see 5, p. 89]
with quantizations, according to the rules of Sections 2.2/.../7,

(2.55b) L, = Q°P,-Q°P; L,=Q°R-0'P; L, =0'P-0°R

We find

(2.56) PB(l,l,)= 2 €ulis € 1 the usual permutation symbol ; see (2.50)

So, according to (2.52), the quantization of (2.56) should be
257 [L.L]- ZsykL -|L.. L, |

The last of the equations (2.56) is satisfied by (2.55b) using the rules of Sections
2.2/.../7. All the usual results, for the quantization of angular momentum, follow from
either method. For example

(258) 22eykLL =0; I’'= ELZ

Clearly (2.50/52) tell us about the quantization of derivatives. Setting

(q)

(2.59) x=x(q); y=p;= PB(x,y)= P

So, according to (2.52), the quantisation of the derivative of x pure in the g is

(2.60) ﬂ =P, x|=x,
dq’

5]

Similarly, setting
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d
(2.61) x=q"; y=y(p)= PB(x,) - z@,

D

So, according to (2.52), the quantisation of the derivative of y pure inthe p is

v (p)

(2.62) - |r,0" |=¥*

P
The results (2.60/62) are exactly the rules (2.3/23).

Despite the above agreements between the two methods they are disparate. We
see this clearly in the first example given at (2.49b). The result is true only if quantization
1 is satisfied with 8 = f. Now there are other, independent and compelling reasons why

quantization 1 should be satisfied for arbitrary 0 ; see Section 3.1 below. Nevertheless,
without this condition, the method which replaces PBs by commutators gives results
which differ from (2.49a). The reason is that this method does not give explicit rules for
sums, powers and products; see Section 2.3. In the deduction of rule (2.52) both [1] and
[5] follow the same argument: The properties of PBs are taken to be summarised by

PB(x,y)=-PB(y,x); PB(x,x)=0;
(2.63) PB(x,y+z)=PB(x,y)+ PB(x,z); PB(x,yz)=yPB(x,z)+zPB(x,y);
PB(q;,p;)=9%,; PB(p,.p,)=0=PB(q,q,)

It 1s then assumed that the Hermitian operators that appear in the definitions
(264) x—=X;, y—=Y, z—Z; PB(x,y)— |'X,Y'|; definition

satisfy rules that look similar to the formulae (2.63). In particular

(2.65) |'X,YZ'|= Y|'X,Z'|+ |'X,Y'|Z; |'XY,Z'|= X|'Y,Z'|+ |'X,Z'|Y

where care has to be taken to preserve order because of non-commutativity. It is then
deduced that, for any four Hermitian operators W, X,Y,Z,

(2.66) [Y.W][X.Z]=[W.Y]X.Z]

Because the four operators are arbitrary (2.66) is an identity only if, for any two
operators, 4, B

(2.67) [4,B]=0[4,B]
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where a is a scalar constant (which commutes with all operators). In order that (2.54)
should be satisfied with

. _ k
(2.68) A=P; B=Q

we must put
(2.69) o =ik

It 1s remarkable that (2.65) leads to (2.67) and thence to (2.52); it is also
remarkable that (2.52) gives so many agreements with the Schrodinger method of
Sections 2.2/.../7. But the step from (2.63) to (2.65) is ‘sleight of hand’ almost without
rational basis. In both [1] and [5] this sleight of hand is covered up by a disreputable use
of notation. We conclude that the PB method of quantization is not a viable alternative to
the Schrodinger method.

2.11 Feynman’s Path Integral Method

The Feynman path integral method of quantisation must receive brief mention.
The method has been an important instrument in the creation of the Standard Model [23].
The Feynman method of quantization expresses the state, at a given time, by means of a
path integral (sum of histories) from a previous time [24]. The kernal of this integral
involves the exponent of a scalar Lagrangian that describes the system. The difficulty of
applying the Feynman method to CT is the difficulty of generating operator constraints,
or something like them, from the path integral; if this could be done the structure of the
Lagrangian would, presumably, be linked to the constraints. No such argument has been
found.

3. Constraints And Constraint Theory- Preliminaries

The quantizations, unlike the differential identities for 6,6,... etc., are not, in
general, identities. They restrict the forms permitted for 6 and the operator / ; they are
constraints. The constraints force patterns/ regularities on P and on the behaviour of the
particles within it. A Constraint Theory (CT) is thus defined. The object of the theory is
to study the patterns produced by the constraints and to see if those patterns describe
recognizable physics. If they do so describe there is then a further topic of investigation
defined by the question: Are there implied extensions, to conventional physics, which
lead to testable results?

We are gambling! If the rules of quantization are in error then the results of the
theory may be nonsense; and, in any case, there may be alternative rules. But, if the rules
of quantization are correct then, the regularities expressed by the constraints are thought
to explain CM in terms of QM [21].
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3.1 The Significance Of The Hierarchy Of Constraints

The infinite hierarchy of differential identities exemplified by (1.1/.../4) is an
expression of a classical ideal: namely, that all the variables are continuous and all the
functions of those variables are continuous and of class C* ; in consequence the space P
is continuous. A system that conforms to this ideal is smoothly deterministic. If any of
the differential identities fail then one or more of the variables, the functions or their
derivatives must be discontinuous; such failure could also be caused by a discontinuity in
P.

The quantizations are each the direct consequence of the above substitution rules
applied to a differential identity. Conversely if we reverse a quantization, by reversing
each of the applicable rules, then we obtain the corresponding differential identity. It
follows that if one or more of the quantizations does not hold, through injudicious choice
of H and 6 — ©, then the corresponding differential identities do not hold and the
classical ideal is compromised. In short: the infinite hierarchy of constraints is a QM
expression that the underlying classical model is ideal. The following argument shows
that the satisfaction of the constraints has to do also with predictability.

Because the ¢ are functions of the time ¢ the scalar function 6(g) can, in

principle, be expanded as a function of 7. The resulting series can be quantized in terms
of operators in the Schrodinger representation

(3.1) 0(t)=0,+0,t+0,t7/2+...—>O1)=0O+0Ot+0¢*/2+...; 0, =06(0)
As we have seen the Schrodinger operators ©, ©,.... are generated according to the rule

32 49

K s—1 0
—>®E{H,®|; 0=0; s=12,.; see(2.17)

t=0
and so (3.1) becomes
(3.3) 6(¢) = O(¢) = exp(iHt / h)® exp(—iHt / )

which is the Heisenberg representation of 6 ; see (2.18). Writing the constraints in the
form

(4) Z =©; s=12,.; see(2.26...29)

the formula (3.1) can be expressed as

(3.5 O@1)=0+ 2 Z}f
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Thus the constraints are expressed by equating the coefficients of powers of ¢ across
(3.1/5).

Now suppose that all the constraints are satisfied up to a finite level # ; that is
equation (3.4) is satisfied only for s <n. Then O(¢) is approximated by

A

(3.62) O =0+ —

Jj=1

Unless the series (3.1) terminates this approximation will be valid only for sufficiently
small 7. Clearly, in general, the higher the level 7, to which all constraints are satisfied,
the better the approximation for a given ¢. Put another way: the higher n the better the
RHS of (3.6) is as a predictor of ©(¢) and its expectation

(3.6b) (©(1))=(t|6|1) =(©) + 2@

Similarly, if the quantities 6, s =1,2,.... are known then the first equation (3.1) can be
used to make a classical prediction of 6(z) . When # is finite, however, levels
n+1,n+2,.... of the differential identities may not hold. It follows that only the formula

J )
n J
(3.6¢) 6(t)z60+260t :

J!

Jj=1
with no extra terms, can be relied upon.

Thus, if n is finite, additional uncertainties are added to the usual QM
uncertainties. Because 7 is small this situation may be summarised by the dictum:
“satisfaction of higher level constraints forces the behaviour towards a classical ideal”

(Kauffman).

No prediction, of any kind, is possible unless n =1 ; and the above argument
suggests that n >1 is always desirable.

3.2 Constraint 1 Requires A Polynomial Form For 7/ With Order At Most 2

The first of the constraints is
3.7 H7.0,[=|H.0]; see(2.26)

Written in full this is
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(3.8) 2’—h (HO -0 )® , +© (HO* -0"H))- %(H@) _OH)

We now consider what happens to /4 when 6(q) is arbitrary. Suppose that 7, =1

and that A is pure in the single momentum P . Then in the Schrédinger momentum (P-
diagonal) representation

(39) P=pl=H=H(p)l, Qsihi; i(HQ—QH)=d—H[
op h dp

so H is a scalar function of scalar p . It follows that (3.7/8) simplifies to a first order DE
with operator coefficients

i dH i
~(ELL pe-0p)+L(p@-0p) |- Lo -on
(s we-em ity p)dp) L 110 - 611)
— _ H_ldﬂp 0+0 H_lpd_H _ld_H@p+lp@d_H=0
2 dp 2 dp) 2dp 2 dp

l(dHi

(3.10)

Now suppose that

(3.11) d—HG)p = p@)d—H
dp dp

so only the first two terms remain on the LHS of (3.10). Then, given that © is arbitrary,
we may equate the pre and post coefficients of ®, in (3.10), to any operator V' that

commutes with ® . The simplest way to specify V' is to assume that, like ©, it is pure in
Q. Thus

(3.12) H—lpd—H=V(Q)=>H=Lp2+V(Q); dV/dp=0
2" dp 2m

where m is a constant scalar. We see that (3.11) holds, both sides being equal to mpQp .
Because H is no longer pure in P we need to replace dH /dp by dH /dp when writing
(3.10).

Notice that, independently of the above argument, the substitution

(3.13) H =ap; aconstant

also satisfies (3.10). Because (3.7) is linear in H we may add the solutions (3.12/13) to
give
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(3.14a) H = Lp2 +ap+V(0)

2m
which, in symbols independent of representation, is expressed as
(3.14b) H = L priaps V(Q)

2m

Thus, we conclude, that if © is arbitrary then constraint 1 requires that H is a
polynomial in P of order at most 2.

The solutions of (3.7) can be further generalized on account of its linearity.
Because the P mutually commute we may add solutions of the type (3.14) for each
component of momentum

(3.15) H = 2

J=1

| R
o brak

J

+V(Q); the m;,a; and k are scalars

where V' can be pure in all the operators Q. When a;, =0V j (3.15) is recognizable as

the form of the Newtonian energy of the system of particles in P; (with the proviso that
the m, associated with a given particle are equal).

The process of generalization may be taken further. It can be shown, by
substitution, that the Hamiltonian

(3.16) H=AP; A=b'P,

where the Hermitian operator 4 is linear in the P with coefficients that are c-numbers,
satisfies (3.7) when O is arbitrary. But this is true for all /. We conclude, by linear
superposition of expressions (3.15/16) multiplied by coefficients that commute with ©
that the most general polynomial form allowed is

3.17) H=K{L", PP ¥/ P jpU; C”=C" uy,j=12,.n; see(235a)

The operators C*, E/, U , by hypothesis, do not depend on the P . They should be
observables and so have real spectra. The algebraic symmetry of the RHS of (3.17) then
ensures that the spectrum of / is also real. They must also commute with the O

because, if they do not so commute, they must depend on the P [2]; this is contrary to
hypothesis. The condition C*" = C™ does not compromise generality.
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If the coefficients mutually commute, as well as commuting with the O then, they

can be represented either by real constants or by Hermitian operator functions of the
coordinate operators Q. They may also be represented by diagonal matrices of such
elements. If they do not mutually commute then they must be represented by Hermitian
matrices of such elements (as in the Dirac equation [1]). In what follows we assume that
the coefficients C*, E/, U are mutually commuting functions of the coordinates Q.

This simplification can be justified by the following argument. If our aim is to
deduce the rules of CM from axioms of QM then the velocity operators, like the
coordinate operators, must have a classical character; that is, they must have continuous

spectra. Given (3.17) the velocity operator of the k” coordinate is
(3.172) 0" = |H,0" |- 2" P, j+ E*;  see (3.17) and (2.17)

It follows that, if any of the C** or the E* are non-scalar matrices then, the spectrum of
0" is not continuous; thus, to reach our declared aim, the C**, E/ must be scalars.

There is a complication. If the Heisenberg representation of velocity fluctuates
very fast, e.g., if the mass involved is high, then the measurement of velocity produces an
average. It can be shown [22] that, if the velocity operator is represented by a matrix and
the system is non-degenerate then, the measurement, i.e., the average, is representated by
a diagonal matrix. But the diagonal still consists of discrete eigenvalues unless the matrix
1s scalar.

A further simplification of (3.17) is possible. Terms like P,C*"P, can be put into
the form either P P C*" + terms linear in the P or C*"P, P, + (terms linear in the P)".

The linear terms can then be subsumed into the terms {5 / P, }+ U at(3.17) to give

(3.18) H = KJQ”V,PMPV JL+ J(W',Pj}+ V, G"=G";, uv,j=12,.n_; see(2.35¢)

c?

as the most general form allowed by constraint 1 when 0 is arbitrary. The scalar constant
K can be chosen to have the physical dimension of (mass) ™. Thus, if H has the
dimension of energy then , the G** have no dimensions. The F’ have the dimension of
velocity and V' has the dimension of energy.

We now prove, for completeness, that (3.18) satisfies (2.26). Given that
(3.182) AQ" =0"4; A pure in the O

we find
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|PP.A|=PAd,+4,P; 4,=|P, 4]
K

(3.18b) = |H,4|= E[G”V (PA,+A,P)+(PA, +A,P)G"]+F"4,; see (3.18)

_ {_[:v’ A,v}
By setting 4 =0 in (3.18b) we have (2.26).

At Section 2.9 we show that, given the Hamiltonian operators (2.35a/c), possible
ambiguities of the quantization (2.26) are illusory. But we have also shown at (3.18) that
the form (2.35¢) is the most general allowed by constraint 1. Another general result stems

from (3.18). Suppose that A4 is any polynomial of the form (3.18); also suppose that B is
pure in the Q. Then

(3.18¢) |4,B]|= ", B,

Notice that A4 can be any derivation of H (with respect to the P and/ or the Q) or any

symmetric linear superposition of same with coefficients that are pure in the Q.
The reverse quantization of (3.18) is the classical Hamiltonian
(3.192) H =Kg" (¢)p,p, + f'(@p; +v(qg); see (2.35b)

where the same scalar functions g, 7/, v appear as coefficients in the Q-diagonal
representation of the operator (3.18). That is, in the Q-diagonal representation,

P =i 9
(3.19b) aq’

GV =g"(pl; g"=g"; F'=f(9; V=v(g)l

; 0/ =q';

Most classical Hamiltonians are quadratic in the momenta; the quadratic form is an
expression of Newton’s laws in classical analytical mechanics. This is a further
justification of the name ‘momenta’ for the conjugates P of the coordinate operators Q.

It follows that the result (3.18) is of high importance, being the first success of CT.
3.3 Hamilton’s Equations In Operators Are Valid In QM

By inspection of (2.17/21/22) we see that
(3.20a) P, =-H ;; Q' =H"*

These equations are the quantum analogue of the classical Hamilton's equations
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. 0H ., oH
(3.20b) p, =-—; ¢ =—

dq’ op;

Indeed (3.20b) can be regarded as the reverse quantization of (3.20a). But keep in mind
that the axioms of quantization require that P is flat and the coordinates are Cartesian; so
the QM Hamilton's equations (3.20a) are restricted to flat coordinates. Their classical
counterparts (p,q) at (3.20b) are allowed to be curvilinear.

3.4. Constraints 1 And 2 Combined- The Theta Equation

The work of Section 3.1 suggests that H and 0 should satisfy, consecutively, as
many constraints as possible. It follows that it is desirable that H and 6 should satisfy, at
the least, constraint 2 as well as constraint 1; we expect 6 to be restricted thereby.
Constraint 2 is

(2.27) Z,=H.H" |® {1/ H"© , = |H,H.0|

By combining this with (2.26/3.7) we can remove all explicit reference to the H* and to
H . We obtain thereby an operator equation involving only the derivations of © . In the
Q-diagonal Schrodinger representation this reduces to a fourth order PDE satisfied by 6.

The PDE contains no reference to either the f“ or v. It allows us, in principle, to
calculate functions 8(g) that satisfy both constraints 1 and 2 given the functions g"'; see
(3.18/19b).

Commute (2.26/3.7) with H to produce
(321) |H.Z, |- |H,H.0|
Subtract (3.21) from (2.27) to get
= 7. 1*0 , p{u.m’ e |-|n.q17.6, |
(322a)=% H* ®jk} LH% e e, }={4 7.0, [} see(3.18¢)

=40,

Written in full the equation of the first and last terms is

%Iij,H:k’(a’j)k }= #{ij’ %’:kﬁ@J’kt}
(3.22b) ¢ o - _ ; see (2.23)
= E(H"H'kQM +0  H'H*-2H'© , ,H")=0; ©,, =0,
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or
(3.22¢) %&Tj’[H:k’@,j,k ]]= 0, 0,,=0,,

Because
(323) |H',4]=2KG"4,; A4Q"=0"4; see(3.18)

the result (3.22¢) is identical to

(3.24) %[H’ ¢'e . Lo

giving, upon further application of (3.23),

hZKZ

(3.25) - G'(G"® ., ). =0; J.k,u,v=12,..n,; Operator Theta Equation

Jakau /v

The numerical factor —%°K?/3 can, of course, be cancelled; we retain this factor at
(3.25) because the operator on the LHS is the imbalance across (5.22a/b). In the Q-
diagonal Schrodinger representation

(3.262) G" =g"()l; g" =g"; ©=0(9)!
and (3.25) reduces to the PDE

(3.26b) g”f(g”ke,jku),v =0; Jj,k,u,v=12,..n,; Scalar Theta Equation

Notice that the theta equation does not contain the functions f7 and v. Further the theta
equation is not a classical approximation; it is a purely QM result. It can be derived by
substituting the quadratic operator H , which derives from the first quantization, namely
constraint 1, into the second quantization, namely, constraint 2.

That 0 satisfies the PDE (3.26b) raises an immediate issue: Quadratic operator
H derives from constraint 1 on the assumption that 0 is arbitrary; but it cannot be truly
arbitrary if it satisfies (3.26b). At most it is the general solution of (3.26b) given a
particular n,-space C. So is the quadratic form of the operator A valid? Yes! Solutions
of (3.26b) must be subject to complicated boundary conditions; thus 6 is sufficiently
arbitrary for the quadratic solution of constraint 1 to follow.

The scalar theta equation (3.26b) can be regarded as a field equation for theta
(subject to possible modification by higher constraints at levels 3 and above). Because the
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g™ the f' and v inform the Hamiltonian they are all candidates for 6. We thus have

three versions of (3.26b) that are putative field equations for the g” the /' and v:

(3.27ablc)  g”(g"g" ), =0; g7 (" f ), =0, g7(g"V ), =0

Recall that, according to the quantization axioms, these equations are true only in a flat
space using flat (Cartesian) coordinates.

3.5 An Alternative Way To Calculate Z, Leads To Questions About Consistency

Condition (3.22a/b) ensures that constraints 1 and 2 shall be consistent. But, when
constraint 1 holds, there is an alternative way to calculate Z,; this, ostensibly, leads to a

second consistency condition. Suppose that a scalar f is a function of the p and the ¢

(3.28) f=f(p.q); p=p@); q=q@)

then
.of . of . of oH of oH
(3.29) f=ipj+lqu=— A —+ fk
ap; dq dp; dqg° dq" Ip,

Quantizing according to the rules of Section 2

(3.30) |H.F|=¥"-H, ¥, .H"} f—F
Now define
(331) F=2,

This definition is consistent with (3.28), that a scalar f = z, is a function of the p and

the g, because

(3.32) aHa(p 4) ae@ — .0, }=27: see (2.26)
P,

Therefore

2= H’Zl %Ka H } %l,k’H:k}

(3.33) {4 }{4 .
= J’ J k:.Hk .l’@’l}’H’j‘
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So the second consistency condition equates two expressions for Z, (see (2.27))

CRVSE VRTERTON R TERTER- W S TN WiCH S 7NN N

or

(3.340) |1, 1,0 |- | 4170, - .0, Lot p Yo, Yo, see 2:2627)

Written in full this is

_hl—z[H(H@ ~6H)-(HO-6H )H |

(3.34c) = :H(H”@,j +0 H’ )— (H:J@J +0 H’ )’4] ; given constraint 1

l
n
(H* (7O, +0 H )k +(H'® ,+0 H )J{H:"

-1, (e, +0,1") - (e, +0,1 J H,

N | —

We now treat condition (3.34) cautiously by substituting special cases! Try the
linear Hamiltonian form

G =0=H = ¥"(0).P, }+V(Q);
335 u
=H'=F';, H" =0, H, =% ,Pu}k+V’k
Then the LHS of (3.34b) is
(3.36a) |H,417,0 , f|= |H.F'®, |- F*(F'® ),

and the RHS of (3.34b) is

(3.36b) {—I:j’@»f}k’H:k} {‘]:I,@J},H,]} QW'G)J )J{,F" }= Fk(FJ®7j),k

This result shows that (3.34) is an identity given at least one Hamiltonian form that
satisfies constraint 1 for arbitrary 6.

Now try the quadratic form in which the coefficients G*', F“,V are constant

scalars. The operator H and its derivations mutually commute and, in addition, we note
that
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|, 40) |- ¥7.4,} HY =2KGYP, + F/;

(3.37) ) ,
H,=0; H|=0; H"=2KG"; G"=G"

It follows that the LHS of (3.34b) is

(3.3%0) [H. 47,0, =17 |H.0, |- 7. ¢ .0, |

and the RHS of (3.34b) is

3380 Y0, b1t p Yo, ou, g e, i)

So again, because j and k are dummy and © ;, =0, ., (3.34) is an identity.

These special cases tempt one to suppose that (3.34) is an identity given only that
constraints 1 and 2 hold. If that is so then the second condition adds nothing. It is,
however, not necessarily so. The second consistency condition might require, for

example, that the g” the f' and v are, a fortiori, the candidates for 0. This would be
the case if it could be proved, for example, that

(339) €(G“G",.),.PP, j+ AT’ (G“F',.),P, j+ BG"(G"V,

S sksu Joku o] sksu

), =0

where 4 and B are non-null and either scalar or pure in the Q. This relation is then

possible only if
(3.40) GY(G"G" ), =0; G"(G"“F'ju),=0; G(G"V,,),=0

which, in the Q-diagonal representation, reduces to (3.27a/b/c). Unfortunately, the
algebra 1s too sticky for me!

3.6 Some Free Particle Hamiltonians That Satisfy All Or Many Of The Constraints

We now consider some Hamiltonians of particles that are ‘free’ in the sense that
their acceleration operators are null. For example

(3.41) H=CP; n =1

c

where C is an Hermitian matrix of constant c-numbers and the single momentum is
conjugate to the single coordinate Q,. We find

(3422) 0, =H' =C; 0,=0=0,=0 forn>1; n=12,..
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......

From now on, when dealing with the case n, = n_ =1, use the shorthand
(3420)R=P; 0,=0: ©, ,=0,

By virtue of (3.42a) only a single term in Z, survives

(3.43) z,={C.C....C,0,, ,}=C"®, ,; n=12...; see (3.42a)

It follows that, because © satisfies (3.42b),

(3.432) Z, = ©
and the Hamiltonian (3.41) satisfies a/l the constraints for all © .

This argument may be extended to the Hamiltonian
(3.44) H=C'P,

where the C mutually commute, commute with the P and the Q, are constant and
Hermitian. We find

(345a) OF =H* =C*; 0"=0=0"=0 forn>1; n=12,...

(3450)0-C'0 ; 6-C/C'0,, =»0-C'C"..C70,

J2seeeesJn

By virtue of (3.45a) only a single term in Z, survives

(3.46) Z,={",C",...C",© J=CICELCPO, =12,

’ ’jl ’jzw"ﬂjn J25ee00n

It follows that, because ©® satisfies (3.45b), (3.43a) holds and al/ the constraints are
satisfied by the Hamiltonian (3.44) for all © .

Consider the Hamiltonian

2
(3.47) HE%; n =1

c
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This represents the Newtonian kinetic energy of a single free particle, of unit mass,
moving in a 1-space. We find (with the convention (3.42c))

(3.48) O=H'=P, 0=0=0=0 forn>1; n=12,..

The n™ constraint is therefore

n 2 2 2
(3 49) O = [f; f; ,~-~-,P7,®‘ = {Papa""P9®1.“.l}= Zn

Constraint 1 is an identity

PZ

(3.50) 7,@} -(Pe,+6,P); {P,0,}=1(PO,+0,P)

as we should expect (because H is quadratic). Constraint 2 is
2 2
(3.51a) r— i @‘ {p.P.0,}

which reduces to
(3.51b) -(P?®©,,+©, P*)/12+ PO, P/6=0=0,,,=0=0,,,=0
The only function of the coordinates that characterises the simple system, represented by

(3.47), is O = g ; this choice certainly satisfies (3.51b). No function of the coordinate
operators appears in the Hamiltonian.

We now show that all higher constraints are satisfied if (3.51b) holds. Constraint
3is

(352){P—2P—2P—2@‘ {p.p.P,0,,}

which reduces to
(3.52b) - P’®,,,-0,,,P’ + PO, P’ + P’©,,,P = O
Commute (3.51b) with P and then post multiply by 12P to get

(3.53a) - P’®,,, - PO,,,P* +2P’®,,P = O
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Commute (3.51b) with P and then pre multiply by 12P to get
(3.53b) - P’0,,,P-0©,,,P’ +2PO,,,P* =0

Add (3.53a/b) to get (9.52b). Thus, if constraint 2 holds (see (3.51)) then, so does
constraint 3. Now if (3.51) holds

(3.54) ©,,,,=0; 0,,,,=0; 0, ;=0
by successive commutations of (3.51b) with P . Constraint 4 is

P2 P2 PZ PZ
(3.55) lj,?,T,T,Q} = {PaPaPaPa@ml}

The RHS of this equation is linear in ®,,,, (with pre and post coefficients which are

multiples of powers of P ) and therefore vanishes. But the LHS is also linear in ©,,,,; for
P2 P2 P2
P R R @

222
also vanishes and constraint 4 is satisfied. By a similar argument, according to (3.54), all
the higher constraints are satisfied. Thus, if ® satisfies (3.51b) then the Hamiltonian
(3.47) satisfies all the constraints.

2 2

example {—,—,@‘ is linear in ©,, and is linear in ©,,,. So the LHS
22

Consider the Hamiltonian

Ji~ ke i

(3.56) H= ngkP].Pk = KE sjl.sz; g =e8,; e, ==
=
This archetype is of some importance to physics; it belongs to the family (3.18). We find

(3.57a) O  =H* =2¢, P" = 0" =0; 0" =0 forn>1; n=23,..
where the expression for Q% is not summed over & and, for simplicity, we set

(3.57b)K =1

Because the Hamiltonian (3.56) is quadratic constraint 1 is satisfied; likewise constraint 2
is satisfied providing that the theta equation (3.25/26) holds

n.

Vl(.
Vi otk — _ —
(3.57¢) g7¢"O ;.. = Zgﬁskk@,j,j,k,k =0= Z €80 ju =0
S Jok=l
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Again there is no function of the coordinates contained in the Hamiltonian; and, again,
we choose the coordinates themselves as plausible candidates for 6 . With this choice
(3.57¢) is satisfied.

Constraint 3 is satisfied if (see (2.28)

n. n. n.

2 2 2
Eejjl)j 7zskkpk ’ZSIIB ,0
= = =

Expanding, keeping in mind that © ,, , is independent of the order of its suffices and that

1

(3.58a) = 2{28,713,»,28%11,28111’1,@,,»,k,z J
Jok,I=1

those suffices are dummy, the LHS is

281,-8;(;{811(}?,[13{(1’1@+@E)+(B@+@B)ﬂ]+[ﬂ(B@+@E)+(B@+@E)ﬂ]ﬂ)
7.kl

(3.58b)" o - _
= 3 e eutu(PLERO+OP L +3PORE + 3P ROF)

Jokol

and the RHS is

(588 € e, ©-P.B.6 23 e euty(PEFO+OF BE + FORE + P.ROF)
Jokil Jokil
where

(3.58)0=0
Collecting terms (3.58a) becomes

(59 Fe et (PPP®-8P PP +PORE+PPOP )0
Jskl

Now we deduce, above, that
(3.22b) %(H“’H:’CG), i +O , H'H*-2H'©  H")=0

which is the general condition that (3.18) shall satisfy constraint 2 given that © is
arbitrary. Substituting the special case (3.56/57) we have
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Geo) 3 e,.(PPO,, +© PP -2PO P )0
J>

as another way of writing (3.57c). Commute (3.60) with P, and then post multiply by
- Pe, to get

(3.61a) - 2 e &y, (P P.O+ POPP, - 2PPOP, )= 0
Jk,l

after summing over /. Commute (3.60) with P and then pre multiply by - Pg, to get

(3.61b) - 2 e &y, (PP.OP +BP PP -2POPP -0
Jokil

after summing over /. Add (3.61a/b) to get (3.59). Thus, if © satisfies (3.57¢) then, the
Hamiltonian (3.56) satisfies constraints 2 and 3.
Let us try to push this argument further. Constraint 4 is

n. n. n. n.
2 2 2 2
Eejjl)j ’Zskkpk 32811131 ’Eemmpm’(a
=1 = m=1

7=

(3.62a)
= 2 ésjjpj’zskkpk’28113928mmpm’®,j,k,1
J.k, =1
Expanding, the LHS is
2 € €41E P (PP, O + OP, PP, +3P,OF, P, +3P,F,OF)
Ea

G.62b) +(P,R.P®+OP PP, +3POF.F, +3P,ROP)P,]

- = > estutitun(PRERO+OP REP,
Jk,l

+4P,0P PP, +6F,POF.F, +4F,P,F,OR)

and the RHS is

16281j8kk8118mm j’Bf’B’Pm9®}
j k1

(3.62¢) {6 o N N _
=5 Desutitam(FERES+BEREE, + POREE, + PEORE, P LEGE,)
kol

where
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(3.62d)© = O

SJskl,m

Collecting terms (3.62a) is

1 ~ ~

< Z € ;€€yE,, (~11P, R AP0 -110P R P,
(3.63) S ' '

+4P,OP,P,P, +14P,POFF, +4P,P,P,OP) =0

Commute (3.61a/b) with P, and then pre and post multiply the results by P e, to get

G:64) = S et (,RP.R& + P,ROPP, ~2P,PPBR, - O

Jskstm

(3.64b) - 2 £ &yt (B R,OP, + BOP PP, ~2PPOPP, )= O

Jskstm

(3.64c) - 2 £ &8, (P LOPP, +OP P.PP, ~2PBP,PP, )= O

Jskstm

CoAD = S e, (P, R8P + P,6P P, ~2P,POPE ) O

Jskstm

after summing over m . Now the four equations (3.64) are derived from (3.60) via (3.61);
and (3.60) is an expression of the condition that ® must satisfy in order that the
Hamiltonian (3.56) shall satisfy constraint 2 and, as we have proved, constraint 3. So, if a
linear combination of the equations (3.64)

(3.65) w(3.64a)+x (3.64b) + y (3.64¢c) +z (3.64d)

exists that is identical to (3.63) then, constraint 4 is also satisfied. Equation (3.65) is
identical to (3.63) if there are four numbers w, x, y,z that satisfy the five linear equations

1 0 0 0 -11
o o 1 ol" |-
Go6a)| 1 -2 1 -2| |=|14
1| 4

o 1 0 o0,
21 0 1 4

These equations are found to be consistent; they have the joint solution

(3.66b)w=-11;, x=4;, y=-11; z=-22
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It follows that (3.56) satisfies constraints 1 to 4.
Clearly the method employed here, to prove that the satisfaction of constraints 3
and 4 follows from that of constraint 2, is cumbersome and cannot be extended easily to

higher levels. Nevertheless it seems likely that the Hamiltonian (3.56) does indeed satisfy
all the constraints given (3.57c).

3.7 An Hypothesis About The Error Operators ©-Z,

The operator

(3.67) E = é— Z; s=12,..; see(2.26/..../29)

represents the error made by expressing é as Z_. The operator (theta) equation (3.25) 1s
the result of the satisfaction of constraints 1 and 2. It can be expressed as

(3.68) E,=0; E =0; see(2.26/..../29,3.2,5.11)

It is clear that there exist higher level theta equations of the form

(3.69) E, =0; k=nn-1..1; n>2

In general we are concerned, in what follows, with the non-null error operators that
remain when all the error operators below a certain level are null. Thus

(3.70) E

n+l

=0; E =0; k=nn-1..1 n>1

Now suppose that the constraints (3.4) are not necessarily satisfied. We see that

(3.71) E.l(t)EG)(t)—@—E }' =E }' : see (3.1)
V= VARV E A

is the total error in ®(¢#) made by expressing the é by the Z_ . In particular, if (3.70)
holds then,

o Zj

—_ - J .
(372) h‘n+1(l‘)_ E J' 5 n>1

J=n+l

According to the calculation leading to (3.25), when E, =O
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(3.73) E,=-

2K2 )
h3 G"(G"O ,,.),;: Jkuv=12n,

or, in the Q-diagonal Schrodinger representation,

n’K?

(374) E2 == gvj(guke,jku),vl

The hypothesis referred to in the title of this section is that, when it happens that
(3.75a)E, =O; n>2; E, =0; k=n-1n-2,.1
and H is quadratic in the P, the error operator has a particularly simple form
(3.75b) E, < (hK)'" O, I; n>2; E, =0; k=n-1,n-2,.,1

where, in the Q-diagonal Schrodinger representation, the operator 3, is a scalar function
of the g . This function ¥, is presumed to depend in a simple way on the g*, their
coordir?ate derivatives and the coordinate derivatives of 8. When H is quadratic in the
P the highest derivative expressions in the g* and/ or 6, in 9, , are expected to be of
order 27 ; then 9, has the physical dimensions of 8x (coordinate)™" . The constant of

proportionality in (3.75b) is not expected to be big; see (3.74). The hypothesis is clearly
true when n = 2.

The series on the RHS of (3.72) always converges rapidly if

‘E

j+l

t

(3.76) >>|E,

1 ; J =3,4,....; assuming that the theta equation holds
j+

where ‘E j‘ denotes the upper magnitude of the finite bounds of the operator E ;. When

either bound is infinite (3.76) may be true only when ‘E j‘ denotes the actual magnitude
(in the Q-diagonal Schrodinger representation) of E; at any point in some finite region of
P. Notice that, if the hypothesis (3.75b) is true (in the Q-diagonal Schrodinger
representation) and 9, has the physical dimensions stated then, £ jtf has the dimensions

of 0. Also successive terms in the series (3.76) have the dimensionless ratio

(3.77) tE,,, hKeY,,,

- =— ; j=3,4,....; assuming that the theta equation holds
(J+DE;, (j+D9Y,

39



The series (3.72) certainly converges if the sequence 9, /¥, is absolutely convergent.

Further, if the ratio (3.77) is always very small then, the higher constraints (n > 2) are
unimportant; that is, the RHS of (3.72) approximates its first term and, for most
circumstances, the first term will be physically small. That is

Et’ : :
(3.78) E,(t)= % ; assuming that the theta equation holds

Given that the hypothesis (3.75b) holds it is, at the least, plausible that, for
laboratory measures of physical quantities, the ratio (3.77) is always very small. In such
circumstances the theta equation (3.25) and quadratic Hamiltonians are sufficient for
CM. For example suppose

K¢
(J+D

(3.79) h=10"" mksu; K =1000kg™; t=3x10" sec; j=3= ~7.5%107% m?

That is K is chosen to be the reciprocal of a gram mass and # is chosen to be
approximately a million years. With these choices, for the ratio (3.77) to be as high as

107, we require 9, /9, to be slightly higher than 10" m™ . If this is our ‘threshold’
then, to make the higher constraints important, 6 needs to change appreciably over a

distance as small as ¥10™* =107 m which is a tenth of a micron. Keeping in mind that

0 is a characteristic of the system large changes, over such a small distance, is probably
at the limit of usefulness of classical analysis.

4. The Coordinate Space C

4.1 Identification Of The Matrix Potentials (Coefficients G*) And The Time ¢

The reverse quantization of (3.18) is the classical Hamiltonian
(3.19a) H =Kg" (¢)p,p, + f'(@p; +v(q); see (2.35b)

where the same scalar functions g, 7/, v appear as coefficients in the Q-diagonal
representation of the operator (3.18). Now suppose, for simplicity, that

4.1) f/=0VYj; v=0
then (3.19a) reduces to

(42) H=Kg"(9p,p,
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and the Hamilton’s equations (3.20b) give, after eliminating the p,

1
(43) ¢’ +T}¢"¢' =0; F,-,’Egg”‘ ik,j+gjk,i—gg,k)

The relations (4.3) have the form of the tensor equations for a geodesic, with parameter
t, in a Riemannian 7, -space having metric tensor g*. The geodesic distance is
proportional to the parameter

(4.4) st

Further, if (3.20b) is the reverse quantization of (3.20a) then, ¢, at (4.4), is the quantum
time (unaffected by the reverse quantization). Note that (4.2/3/4) amount to a classical
approximation because they are based on (3.19a).

4.2 The Coordinate Space C And The Representative Point Q

The functions g* = g™ appear to be elements of a fundamental tensor in a
Riemannian n, -space. Denote this space by C. The coordinates g of the particles in P are

those of a single representative point Q in C. The classical equations of motion of this
point derive from Hamilton’s equations operating on (3.19a). The motions of each of the
particles in P are thus determined by the time variation of the corresponding subset of ¢

along the path of Q. We must define the space C to be flat; if it is otherwise there will be
topological inconsistencies in using the same set of coordinates ¢ in both P and C.

If we accept the above interpretation of the g” = g™ then the space C is

Riemannian metrical and flat. But if P contains only one particle then its coordinates are
those of Q and we can say that P=C. So P is Riemannian metrical and flat. This
conclusion is consistent with the quantization rules; see Section 2.2 et seq.

Notice that if

45) f/7=03ja/vv=0

then the path of Q in C is not a geodesic but, presumably, the other interpretations are
unaltered.

4.3 The Theta Equation, As It Stands, Is No Use For Explaining Gravity
The equations (3.27a), derived from (3.25) by assigning 0 = g, are, apparently,

of no use in explaining Einsteinian gravity. In the first place, (3.25) is not then a tensor
equation. In the second place, if the fundamental tensor g” is to describe Einsteinian
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gravity then C must be curved. We see this, at once, by considering a single particle in
Minkowskian P with Galilean coordinates. In this case the properties of C may be made
identical to those of P if we choose the g to be Minkowskian; the four coordinates of Q

are, necessarily, Galilean. But that is as far as we can go. By definition C is flat. Neither

the actual particle in P nor the representative point in C can behave as if subject to
Einsteinian gravity.

4.4 The Curved ‘Coordinate Space’ C'- Kilmister’s Equation

Consider a curved Riemannian n,-space C' with general coordinates ¢’ . Suppose

that C is tangential to C' at common points O" in C' and O in C. Then the coordinates
i, can be chosen to be locally Cartesian geodesic at pole O" such that

(4.6) ¢= i’ ; X= %; t proportional to the geodesic distance in C

Thus (3.25) can be said to hold in both spaces in a neighbourhood of O’ = O . Also true in
that neighbourhood are the classical equations of motion of Q. But those equations of
motion are tensor equations (given the assumptions that the 7/ form a vector and v is an
invariant) true in all coordinate systems. It follows that we may choose

(4.7) O =Q with flat coordinates ¢; O"= Q' with geodesic coordinates ¢’

and the equations of motion for Q" will be the same tensor equations expressed with
respect to the coordinates ¢'. The difference between C and C' is that in the latter space

the metric tensor, and therefore the curvature, is unrestricted.

If the theta equation (3.25) holds only at the pole of geodesic coordinates then it is
approximated in a neighbourhood of that pole. This idea is consistent with the notion that
most quantum events, associated with particles, take place in a small region of space.

The question arises: What tensor equation, defined in C', reduces to (3.27a) at the
pole O’ of locally Cartesian geodesic coordinates when 6 = g” ? This question has been
answered by Kilmister (see below). The tensor equation is

(4.8) g7 (R, +2R.R,)=0; R, isthe covariant Ricci tensor; a,b,e, f =12,...n,

th

where (.).; denotes covariant differentiation with respect to the ;™ coordinate. This

equation can be interpreted as governing the curvature of C'. It seems to allow us to make
contact with Einsteinian gravity. If so then it applies only to the space between particles.
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The question also arises: What is the status of the Kilmister equation? Is it
quantum mechanical or is it classical? The theta equation, as we have seen, is quantum

mechanical. But the Riemannian character of C' depends on the identification of the
functions g as the metric in a geodesic equation; and that depends on the reverse
quantization (3.19a). So the Riemannian character of C' is a classical approximation.
Because it is derived from the theta equation, on the assumption that g is the metric of

a Riemannian space, we need to regard the Kilmister equation as a classical
approximation.

If the Kilmister equation can, in fact, describe gravity then it seems that gravity is
an emergent property of macrophysical systems.

4.5 A Change Of Notation

In what follows, for simplicity, we drop the primes appended to C', O', Q' and
i, except where there may be ambiguity. When C' happens to be flat C' and C are

identical and we may choose i’ =¢ and Q'=Q. When C' might be curved we emphasize

this by using standard notation for the coordinates in C' and a consonant notation for the
representative point Q'

(49) x=q; X=Q

Thus, in the new notation: C may be curved and the coordinates x of the representative
point X in C cannot then be the aggregate of the coordinates g of particles in P. But if

the x are geodesic at X then we may choose

(4.10) §=x; atX. See (4.9)

5. Derivation Of The Kilmister Equation
5.1 Note On Geodesic And Local Cartesian Canonical Coordinates

Before considering Kilmister’s answer to the question: “To which tensor
equations, expressed in Cartesian geodesics at a pole X, are the equations (3.27a)

equivalent™? it is wise to review certain technical matters!

It can be shown [6] that if a point A is sufficiently close to a point B then the path
defined by the geodesic equation, between A and B, is unique; in the n_-space C, n,

such paths from n, points B, terminating at the same point A, can be used as coordinate
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axes within a neighbourhood of their origin A. We shall call such coordinates Geodesic
with pole A.

Kilmister’s argument uses special geodesic coordinates known as Canonical
Coordinates [7]; these can also be local Cartesian. It is convenient to gather here certain
facts about such coordinate systems. Suppose that we express a non-singular

transformation from coordinates X’ to coordinates x*

(5.1) x“=x"‘(x")

and, further suppose that the RHS of (5.1) can be expanded as a series about any point P
(5.2) x“=AX"+B:x"x° +C. x"X°X? +.....; summation convention in force

a

where the constants B,, and C,., are symmetrical in their lower suffices. Note that the

x“ have been chosen so that the two sets of coordinates have a common origin P. Now
consider a neighbourhood of P in which

a

(5.3) x“=A'X"+B.X"x+CLx"'x%; X" —=o0

Neglecting, for the moment, the second and third order terms the constants 4, can be

chosen so that the x“ are orthogonal [6] in a neighbourhood of P; and, therefore, the x“
can be regarded as Cartesian locally to P. The constants B, , being equal in number to

the g', can be chosen so that, in the x“ system,
(54) g, =0

is satisfied at P. This is the primary property of geodesic coordinates [8].

Kilmister assumes that the x“ are already orthogonal (local Cartesian) geodesic
and he applies a further transformation

(5.5) x“—=x"+C. x"xx°

C

leading to a different set of geodesic coordinates. He then applies a set of conditions on
the C,,. Namely, that at P,

(5.6a) T, ,+T;,,+I; =0; I , isa Christoffel symbol of the second kind [8]

these being constraints on the second derivatives g, ,,. The coordinates (5.5) are then

said to be canonical [7].
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Is this procedure valid? Because I, is symmetrical in the suffices bc it follows
from (5.6a) that

(5.6b) l“c“b’d + I“;c’b + F,fd’c =0

Thus there are as many conditions (5.6) as there are coefficients C,,,. So the C; , can

always be set to enforce (5.6). But we must still investigate whether or not the conditions
(5.6) could constrain the curvature tensor [8]. There are

5.7) . +n(n —1)+ " ‘?'(”C =2 (2 430, +2)/6

conditions (5.6) which constrain the

(5.8) ni(n,+1)*/4

second derivatives of the g, . It follows that there are still
(5.9) ni(n,+1)*/4=n(n’+3n,+2)/6=n’(n,-1)>/12

degrees of freedom. This is also the number of independent elements of the curvature
tensor [8]. So the conditions (5.6) do not constrain the curvature tensor. Kilmister’s
example is for n, = 4; but the point he makes applies to all n, .

There 1s some complexity, not to say confusion, in the terminology used by
various authors for the sort of coordinate system that interests us here. [8] calls systems
that satisfy (5.4), at a pole, geodesic. [6] calls such systems, with coordinate axes defined
by geodesics emanating from and in the neighbourhood of a pole, normal. [9] calls such
systems Riemannian; we call them geodesic. [9] calls systems for which, at the pole, the
metric tensor is diagonal with elements equal to =1, local Cartesians. [7] calls such
systems natural; and, of course, natural coordinates can satisfy (5.4). [9] reserves the
term geodesic for systems where the Levi-Civita connections vanish at a pole; this
criterion can thus apply to non-Riemannian spaces, for which a metric is not defined, as
well as to Riemannian spaces. [9] reserves the term normal for systems defined by a set
of parametric surfaces.

5.2 Kilmister’s Derivation Of (4.8)

The following argument was communicated by Clive Kilmister in a letter.
Passages or expressions in square brackets, thus [], are mine.

" If one does the cubic transformation
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(5.10) x* = x“+C. x"xx? [n =4]
bed c

a

on geodesic coordinates you have 80 coefficients C,,
you to apply the conditions ([7], Equ. (36.7), p.79)

, and these are just enough to allow

(5.11) I, +T, +T; =0
(which I say produces 'canonical coordinates'- Ibid. p.79). Now in geodesics
(5.12) R, =T, -T,. ,; [Riemann-Christoffel or curvature tensor]
(in my sign convention).
From (5.11)
(5.13) =TI, , =T, +T,.
so that (5.12) becomes
(5.14a) R, =213, .+ T,
Interchange b and c
(5.14b) R, =T}, . + 2@,
These two give
(5.15) 3I,, =2R;, - R,,
But
(5.16) =R, ,=R., + R, =-R;, +R;.; [[8], Equs. (32.3) and (32.4), p. 51]
Hence
(5.17) Ty =5 (Ro + RG,.)
This is the key to everything.
Since

(5.18a) g, . =g, 2 +g T7; [[8], Equ. (20.4) et seq., p.27]
ab,c pb™ac ap™ be
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we have [at the pole of geodesics]
(5.18b) 8o = &ppluaea + 8ol
and using (5.17) gives

(519) Zupea = 5 Repaa + Reand)
Hence

(5.20) €“€upes =5 R

The next step may need a little care. If we want to calculate R, ,, we can say

Ryy=WR, +ToR, +T7R, ),

ae” " pb be” “ap
(521) =R, +T, R, +T} R, +[[ R,  +L R, 1, [see(5.17)]

= Lepr
- Rab;ef + 3 (R

e +R? R, +R2.R +R§bRap)

efa bfe” “ap

after some cancelling [and because I'” =0 at the pole of geodesics]. The first and third

terms in the bracket, on the RHS of (5.21), vanish, because R jfe is skew, and the second

and fourth terms are equal. So

(5.222) 87R,y 0 =[5 278" Cupetr =187 (Rups + 3 R,R ) = 0 [see (5.20)]
[because

(5.220) 87 88 ey =0 <> 878" 8 =01

I know I've been using g, when you prefer g* but it is all easily converted.

How splendid canonical coordinates are!"

The last of the equations (5.22a)
(4.8) g7(R,, gt %RaeRﬂ?) = 0; Kilmister Equation

is clearly a tensor equation, the LHS being composed of sums and products of tensors,
and so is the required result.
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6. Some Classical Mechanics

6.1 Gravity In Empty Space

By assuming that there is but a single particle in P (n, =1) and choosing P to be

Minkowskian (n, =4) we have

(6.1) n.=4
If C is flat and
(6.2) x=g¢

we can require C=P. We can, however, make contact with Einsteinian gravity by further
assuming that C is, in general, curved and that, only as the curvature evanesces, is C—P
possible.

The curvature of C is governed by the Kilmister equation which states that the
Kilmister tensor vanishes

(48) K, =87 (R +2R,.R,)=0; ab,e,f=12,.n

where R, is the covariant Ricci tensor. We say that (4.8) can have to do with Einsteinian
gravity because, when

(6.3) f/=0; v=0; n,=lL n,=4=n,=1,

the representative point at X moves along a geodesic of C and the particle in P moves so
that

(64) i=g

where the coordinates x in C are geodesic with pole X. When there is curvature neither
X nor the particle in P can move so that x = ¢ is constant. Notice that solutions of

(6.5 R,=0inC
are always solutions of (4.8) but not vice versa.

If we take the original classical model literally, the space between the point
particles in P is empty. It is reasonable to assume, therefore, that, for the purposes of
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theory, there is no distributed matter in C. This idea is supported by the fact that, given
suitable dimensionality, signature and metric, (6.5) is Einstein’s original law of gravity in
the empty space between distributions of matter.

But we may be obliged to accept that physical space-time contains a vacuum
energy; and, even though C is a mathematical artefact, given (6.3) we can assign suitable
properties to C. Further, there seems to be no bar to approximating a large number of
particles in P to a continuous fluid.

6.2 The Significance Of n_ =4

The dimensionality n, =4 has a special significance in relation to the laws (6.5)
and (4.8). The tensor equation (6.5) expands to

(6.6) n.(n,+1)/2
unique PDEs. But (6.5) is the contraction of the tensor equation

(67) R;ibc = O

where R’ is the Riemann-Christoffel or curvature tensor. The condition (6.7) defines
the space as flat [8], [9]; and it comprises

(6.8) n’(n>-1)/12

unique PDEs [7]. We deduce that solutions of the tensor equation (6.5) cannot imply
curvature if

(6.9) n(n,+1)/2=zn’(n>-1)/12=n, <4

because, under condition (6.9), (6.5) will imply (6.7). So, given (6.5), curvature is only
possible if

(6.10) n, =4

The same is true for the solutions of (4.8) since (4.8) also comprises n_(n, +1)/2 PDEs.
When n_ =4, given that there is only one time-like coordinate, the remaining three must

be space-like. So, if C is curved then, the minimum dimension allowed for P is four and
the geometry of P is then Minkowskian.

6.3 Some properties of (4.8) In Relation To GR
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The material of the following section, equs. (6.3) to (6.17), is better set out in the
notes [25]. In particular [25] makes clear that (4.8) is entirely geometrical; the Kilmister
equation describes the evolution of the metric tensor given four sets of geometrical
boundary conditions. If we wish to understand the implications of this solution for
matter-energy-stress we must substitute the resulting metric tensor into Einstein’s
equation (6.11).

We now confirm the assumptions of Section 6.1 so that the Kilmister equation can
make contact with GR. As we remark above, in the classical model, there is no matter
between the point-particles in P ; and we assume, for the purpose of theory, that there is
no distributed matter in C.

Einstein's later law, for gravity in the presence of a continuous distribution of
mass-energy-momentum-stress, allows us to investigate this idea. The law is

6.11) G, +Ag,, +xT, =0; G!=R!-Rd"; [3]
v =81G/c* =2.076x10™* cm ™ gm ' sec®

where A is the cosmological constant, G is Newton’s gravitational constant and 7, is
the mass-energy-momentum-stress tensor.

A word about the origin of (6.11). The classical conservation laws of mechanics
can be expressed by saying that the divergence of 7, vanishes

(6.12) T¢, =0

Einstein proposed that there should be a geometric tensor that corresponds to 7, ; thus
the curvature of space-time would be related to the matter content. This tensor, like 7, ,
would have a zero divergence. The geometric tensor G, has this property; and Einstein
further proposed that these two tensors, the mechanical 7, and the geometric G, ,
should be proportional

(613) Gab +XTab = 0’ Glf;a =0

He later added the A term on cosmological grounds; and, later still, he came to regard
this addition as a blunder. The value given for the constant % is determined by the

requirement that, under conditions of weak gravity and low speed, (6.13) must agree with
Newtonian mechanics; see Poisson’s equation [10].

If

(6.14) T, =0
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that is, the space-time is truly empty then,

(6.15) G, =-Ag, =R, =Ag,.

Substitute this last result into

(4.8) g7(R,, gt %RaeRﬂ?) = 0; Kilmister Equation

and we get
(6.16) A=0=R,=0; see (6.5)

Suppose, however, that the space-time is not truly empty; that is, there is no matter
between the particles but, there is energy. We then have

6.17) G, =-Ag, -xT, = R'=G" -1 Gd" = —x(T" - 1 T8") +d"A
ab ab ab v v 2 v v 2 v v

which can be substituted into (4.8) to give a tensor equation for 7, . If we believe that
space-time is truly empty then 7, and A vanish and this equation is a null identity; see

(6.5/14/16). But, otherwise, (4.8) gives possible distributions of energy-momentum-
stress. This restriction is not as stringent as might be supposed; because the PDEs (4.8)
are of fourth order they are capable of much flexibility.

6.4 Newtonian Approximations

The Kilmister equation is of mind-boggling complexity! Just to set it up, using
(say) the spherically symmetric (SS) metric of Schwarzschild [8], we require a computer
to do the algebra. The resulting PDEs occupy pages. Formal solution, by computer, fails
(so far). Yet the computer does show that the Schwarzschild metric satisfies both (6.5)
and (4.8) exactly as it should. As far as I can see we have no recourse but to resort to
special cases and approximations.

Suppose that the gravity is weak, so that the space-time is nearly flat, and that
matter/ energy moves slowly or not at all. Then we may use quasi-Galilean coordinates
and assume that the metric is, approximately, Minkowskian. Thus

a=gh =0, 2k, g, =-1429Q, g, =142Q; n=123

g
(6.18) 44
gt =-1-2Q, g* =1-2Q; |Q|<<1; n,=1 n,=n, =

[7], p. 101
,7hp

c

where Q is a dimensionless potential proportional to that of Newton. Since we are
aiming at a Newtonian approximation we assume (6.16) at the outset; the A term was not
envisaged by Newton, is meaningless in the context of his theory and was rejected,

51



ultimately, by Einstein. Note: the expressions (6.18), when compared with those given by
Eddington [7], replace Q with — € . The reason for this is that Eddington, in his
derivations, refers to

(6.18a) Q=GT’"; m>0
cr

as the potential due to a single point particle at the origin; whereas the usual definition is

(6.18b) @ = -
cr

so that the Hamiltonian expression for the radial acceleration

(6.18c)—c2d—9=—G—m
dr

2
r

is negative (i.e., gravitating matter attracts).

We now investigate the 7" dictated by (4.8) in the manner alluded to at (6.17).
In the quasi-Newtonian approximation only one element of 7 is non-zero; it represents
the energy density in space. Because, by hypothesis, there is no material, between the
particles, this energy density is not due to matter.

In quasi-Galilean coordinates the stress-free energy tensor is approximated by

, dx® dx’

(6.19) T =c’p T [7], p. 102

where p is the proper mass-density equivalent of the supposed energy density ¢’p (an
invariant). Under the conditions cited it is legitimate to make the following further
approximation. In the space between particles

(6.20) T =c%p; T =0; Ty =T"g, =T =cp(1+2Q)=T; T =0; (ab)=(44)

Therefore

R =-L2501429Q); R' = %201+ 29Q):
(621a) 4 =T PUF2R Re=Tep+ 200 617)

R'=0; a=b;, u=123; ab=12,.4

From (6.18) we get
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(621b) R, = R'g,, =R, = —%czp; R, = —§c2p<l +4Q)

neglecting Q° compared to unity. We shall later treat %c’p/2 as a first order small
quantity. Therefore (6.21b) can be simplified to

X 2 X 2
R c . R ~ ‘? .
(6.21c) ™ 2 P R 2 P

R,=0; a=b; a,b=12,.4

It can be shown [7, p. 102] that, to the same degree of approximation as at (6.18),

2

(6.22a) R, =0,a=b, R, =0°Q; O’=-V*+ x*/c is coordinate time

Ay
and, if Q does not involve the time, then

(6.22b)R, =0,a=b, R, =-V’Q

Result (6.21¢) combined with (6.22b) gives

_ 4nG

2
C

(6.23) -R. =V’Q= §c2p

which is a version of Poisson’s equation [10]. In this case, given the conditions for the
Newtonian approximation, (6.23) relates the putative energy density p to the potential
Q. Now suppose that we substitute (6.22) into (4.8) instituting (6.18), that is, the same
level of approximation that leads to (6.22). We have, with quasi-Galilean coordinates,

(624) gefRaa;ey‘ = gE/R = D 2( D 2 Q)ﬁ gEfRab;eff - O’ a= b7 gej.RaeRﬂJ g O

aa.of
Thus
(6.252)0*(0O°Q)=0=0p=0; see (6.21c/22/4.8)
and, if Q and p do not involve the time, then

(6.25b) V*(V’Q)=0=V’p=0

We see, at once, that Q satisfies versions of the theta equation. Given that C=P is
Minkowskian and the coordinates are Galilean then the theta equation
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(3.26b) g7 (g"0 .. ), =0; j, ku,v= 1,2,...n,; Scalar Theta Equation,

,Jku /v

with 6 =Q, becomes (6.25a). Likewise, with 6 =Q, if C=P is Euclidean and the
coordinates are Cartesian we get (6.25b). Further the result (6.25a) shows that the energy
density propagates according to the wave equation; but, if the energy density is
stationary, then the result (6.25b) shows that it satisfies Laplace equation.

There is another way of looking at the first result (6.25b). The QM Hamiltonian
for a single Newtonian particle in E3, acted on by a scalar gravitational potential v(g), is

(6.26) H = %E P +V(Q);, Q=4ql; V(Q)=v()I
m 4

where m is the particle mass. Here the Hamiltonian operator is quadratic, the space is
Euclidean, the coordinates are Cartesian and v is a function characteristic of the system
which, therefore, must be a candidate for 6. Comparing (6.26) with the general case
(3.18) we see that the metric is

.
(6.26a) g, = ﬁ; n,=n, =3 because, by hypothesis, n, =1
m

proportional to the Euclidean metric. The theta equation for v is
(6.27) 4m’K°V*(V*v)=0=V*(V*»)=0; see (3.2/ 6.25b)
The relation between v and the dimensionless Q is

(6.28) v=mc’Q

That Newtonian approximations of the Kilmister equation produce versions of the
theta equation is hardly a surprise; the Kilmister equation derives from the theta equation.
But this circumstance provides a check and allows us a limited freedom to calculate.

6.5 Extra Terms In The Newtonian Approximation

The spherically symmetric (SS) solutions of the equations (6.25b) are
k, 2
(6.29) Q=—+k,r" +kyr+k,
r

and
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(6.30) p=lrst
r

where k,,....k,,/[,,l, are constants; the symmetry is about the origin. When r is small the
terms k, /r and [,/ r dominate (6.29/30); when r is large the term k,7* dominates (6.29)
and p =/, is constant. We recognise the k, term at (6.29) as corresponding to the
Newtonian potential due to a gravitating point mass at the origin (for gravitation k, <0).
We must not, of course, allow » to become so small that the approximating condition

|£2| <<1 breaks down; see (6.18). We also recognise k, as the arbitrary potential floor in

the Newtonian theory which, in this case, must be set to zero (to ensure |£2| <<1). In other

words these are the customary terms in the SS solution
(6.31) Q =£+k4
r

of the usual potential equation for empty space
(6.32) V’'Q=0

But what of the extra terms k,7” + k,r at (6.29)? The usual classical field

equations are of second order. The difference between the solutions (6.29) and (6.31) is
an illustration of the fact that, because the theta equation is of fourth order instead of
second order, its solutions contain two extra terms. To have escaped experimental
detection, in this case, the extra terms (those involving &, and k;) must be either zero or
very small; if the latter then, perhaps, the corresponding terms are significant only at
cosmological distances.

Suppose we regard these extra terms as providing a perturbing radial acceleration

, d(kyr? + k1)

6.32a) -
(6.32a) -c rn

—c* (2kyr + ky)

We see that this perturbation is of quite a different form to the GR term, in the orbital
equation, that produces the advancement of the perihelion of Mercury; that term is

proportional to 1/7* [10], p. 27 and [8], p. 117.

We could, of course, invoke the principle that the influence of point masses or
charges must decrease with distance; in which case k, =0 and k; =0 by fiat. If we
invoke this principle on all relevant occasions the new theory may not differ so much
from the old. The principle is used, for example, as a boundary condition when
calculating the Schwarzschild metric [8], p. 115. It is assumed that, at great distance from
a single isolated particle, the space becomes Minkowskian. The principle is also used to
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reject one of the Bertrand solutions as “‘unphysical’. Bertrand [10], p. 90 found that
central orbits, under a power law potential, are closed only if the power is —1 or 2 ; the
latter result was rejected.

We do not invoke the principle here. Rather we allow the extra terms to generate
an energy density ¢’p calculable from (6.23)

c’p= ivzg = %Vz(%+ kyr® + ko +k,

2
o) wad 24
X r dr= rdr

(6.33) ) : see (6.23/29)

If we compare (6.33) with (6.30) we see that some of the constants are connected

3(c? 1({c*
634) I, =—> Vk: 1 ——( |k
(634) L 2(75G) 2o 2(nG)3

If r is large enough then the energy density is appreciably constant at value
12k, /x ; see (6.33). The radial acceleration (along a line to the particle at the origin), of a
test particle of infinitesimal mass, is

(6.352) - ¢’ a_ c2(£; —2k,r - k3)

dr r
and, if 7 is large enough then, this approximates
(6.35b) =’ Rk,r + k) = =c*2k,r; r—>

Consider two test particles of infinitesimal mass. Place them at points x};, and

X(5, - Then their Newtonian equations of motion are

(6.36) i =-c"Q |x=x,; ¥ =-c"Q |[x=x,; wv=123; see(6.28)
Define the displacement n" of one particle with respect to the other by
(6.37) xj, =x" x5 =x"+n"

Then, assuming that 7 is large, (6.29/36) give

(6.38) Q= kzrz; N =- c2§27v ‘)_c =X + CZQ,V ‘)_c =X = —2czk2n”; y—>
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Thus, at a sufficient distance from the origin, the test particles experience a relative
acceleration/ deceleration proportional to their distance apart and along the line joining
them. By contrast, the terms k, /r, and k,r causes an acceleration/ deceleration of both

particles but in a radial direction.

Now suppose that there are many gravitating particles at a great distance from the
two test particles. Because the first equation (6.38) makes no reference to the origin we
have

(6.39) " =-2c°K,n"; K, = Ekz

the summation being over the gravitating particles. This last result relies on the additivity
assumed for potentials in Newton’s theory.

6.6 Dark Energy?

Standard cosmological models [3] predict, without benefit of A, that the universe
expands, roughly, according to the Hubble law; but, at great distance/ time, the
predictions require that the expansion slows. Recently, however (1990s), measurements,
using supernovae as standard candles, suggest that, at great distances, the expansion is
accelerating. The effect is said to be due to dark energy.

To explain this phenomenon some theorists have resurrected the A term; but the
new A has a sign opposite to that of the quantity originally introduced by Einstein which
was required to stop the expansion! Other theorists have introduced mysterious scalar
fields to explain the extra acceleration. The new theory, however, seems to predict the
dark energy effect quite naturally.

We have shown above that, in the Newtonian approximation at least and at great
distances from gravitating particles, a constant density of energy is imposed throughout
space. This has the effect that two test particles, of infinitesimal mass, experience a
relative acceleration/ deceleration proportional to their distance apart and along the line
Jjoining them. This motion is superposed on any other motions (that may be predicted by
standard cosmological theories) including the Hubble recession. The constant of

proportionality is —2¢’K, ; see (6.39).

Can we estimate a value for K, ? In particular what is its sign? In the present state

of the universe the rest energy of the matter (including gas and dark matter) dominates.
We make the assumption, common to standard cosmologies based on GR, that, over large
enough regions, the mean matter-density p, is constant [3].

We make three additional assumptions in order to apply the above Newtonian
analysis to large regions of the universe: a) the curvature is small; b) the velocities of the
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matter fluid are small compared to c; c) the total energy of the universe is zero. This last
is a radical hypothesis; but it gives a definite sign and magnitude to K, .

As argued above the extra terms, in the potential of a distant gravitating particle,

give rise to an energy density 12k, /7 ; see (6.33). So, according to the ideas that lead to
(6.39), many such particles give rise to a constant total energy density

(6.40) c’p= Ezkz - 2K2
X X

Because both p and p, are appreciably constant assumption c¢) can be expressed as
(6.41) P+P —>O:>pz—p0

Given (6.40) this implies
X 2 .
(6.42) K, ~—Ec P, <0; p,>0

Therefore, according to (6.39), the infinitesimal test particles recede from one another.
Assign a typical estimate of

(6.43) p, =8x107° gm cm ™~ ; roughly the closure value
0

and the acceleration of recession per unit of separation is
(6.44) -2¢°K, = %c“po = %quo =2.236x107 sec *; see (6.39)

In order to compare (6.39/44) with the Hubble law
(6.45) W' =Hn" =1" =H™"; H is the Hubble constant

we compute

(6.46) +4/-2¢°K, = +‘/§nGp0 =1.495x10" sec ™' = 14km sec ™" per 10°ly

This value is at the lower bound of modern estimates of the Hubble constant (15 to 30
km sec ™" per 10°ly). So the effect predicted by the above argument is significant.

The situation studied in the above argument may be summarised as follows.
Gravitation is a phenomenon by which (positive) matter/ energy tends to clump whereas

58



(negative) dark energy tends to spread out. There is a temptation to regard this negative
energy as that due to the original antimatter which, it is supposed, was an equal
companion to the matter created by the Big Bang. Hence the above assumption that the
total energy of the universe is zero.

6.7 The Need For An Exact Cosmological Investigation

Keep in mind that the assumption (6.41), that c¢’p (dark energy-density?) is the
negative of the rest energy of the mean mass-density ¢’p,, is debatable. Further the

analysis is crude. Perhaps the results are misleading. We need a full cosmological
investigation which marries the Kilmister equation with (say) a Robertson-Walker model
of an homogeneous and isotropic universe [3]. Machine algebra would be a necessity.

A first go at this project is reported in [25] and [26]. The results, although mostly
approximate, are very satisfactory; they are summarised, briefly, in the Overview. We
may need to recalculate the various cases with an evaluation of Term1 and Term2 in
addition to every final calculation of the Kilmister tensor; these would show what the

balance of the approximation is in K, — 0. In addition it would be desirable to give

analytic expressions for the Ricci and Einstein tensors under the cosmological metric;
(see the Introduction to [25]).

6.8 Two Particles- Flat C- Electrostatics Or Gravity?

Hitherto, when examining the field equation (4.8) or its flat-space progenitor
(325) g‘{/ (guke,jku ),v = 0 ’

we have considered a single particle; thus #n, = n, . This raises a question: how does the
new formalism deal with more than one particle?

We consider the simplest problem, involving only (3.25), first! Two particles, in
an Euclidean 3-space P, move under a scalar potential according to Newtonian
mechanics. We thus have n, =3 and n, = 6 . The appropriate Hamiltonian operator,

expressed in the Q-diagonal representation, is
1 3 6
(6.47) H = 5 2 Pl /m + ZPJ? Imy |+Q(Q); Q=ql; QQ)=w(q)]; m,m,>0
J= J=

where the symbol € is now used for the operator that represents the Newtonian potential
(energy). Given its position in the Hamiltonian (6.47) the function w is a candidate for

0. Particle 1 has mass m, and Cartesian coordinates ¢’,¢°,¢’ ; and particle 2 has mass

m, and Cartesian coordinates ¢”,¢°,q”. The metrical coefficients of C are obtained by
comparing the expression (6.47) with the general case (3.18)

59



(648) g" =—— u=123 g"-

; v=456, g/ =0, j=k
2mK 2m,K g /

where K is a constant with dimensions of (mass) ™' that ensures that the metric has no

dimensions. The coordinates and the space are flat; thus (3.25) applies to the whole of C.
Substituting the metric, with an appropriate choice for 6, (3.25) becomes

6
(6.49a) Z g7g"0 =0, B=0w
Jok=1

In more detail

1 3 1 3,6 6,3 1 6
——s YO W o+ O |+ YO
(2mK)? _1';1 o 4m,m,K* (_i=1, M ./=2,=1 ’jjkk) (2m,K)* ./724 o
AR +(V5V§+V§Vfw)+ ViVio 0

2mK)? 4m,m, K> (2m,K)?

(6.49b)

and then, more succinctly, cancelling through by 1/(4K*) we get

2 23?2
(6.49¢) (L+L) w=0; m,m,=0

m, - m,

According to Einstein the expression of physical law must be independent of the
choice of coordinates. In this case w(g) must be an invariant independent of rotation and

translation of the coordinate axes in P. The only such invariants, associated with the
classical model, are the distance in P between the two particles

(6.50) I=+(q'-4") +(q*-¢°) +(¢’-¢°)’]"

and functions of same. So w is a function of /. Therefore

d* 2d
6.51) V’‘o=Vio=|—+=— |
©.51) Vi ? (dﬁ ldl)

and (6.49¢c) becomes (after division by (1/m, +1/m,)")
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The general solution of this equation is (¢,,...,c, are constants of integration)
(6.53) w= cl—’+ c,l” +c,l+c,; compare with (6.29)

If [ is small enough, we may neglect the terms c¢,/” + ¢,/ . Then w provides an inverse

square force (of attraction if ¢, <0 and of repulsion if ¢, > 0) along the line joining the
particles. In this sense the new field equation (3.25) is successful. The neglected terms
are supposed only significant when the distances are cosmological. But, depending on the
signs and magnitudes of ¢, and c;, other behaviours are possible. For example, if ¢, >0
and the kinetic energy is finite then, the particles are (classically) confined, irrespective
of the sign of ¢, and / is bounded; (pairs of quarks are confined in an analogous
manner).

Strictly speaking, because C is flat, we could say that the result (6.53) does not
apply to gravity; rather, we might say, it must apply, if it applies to any force in nature, to
electrostatics. But (6.18), which can be described as a Newtonian approximation to a GR
metric, leads, via the tensor formalism of GR, to (6.25/29)! Thus Newtonian
approximations, as in the conventional physics, require the electrostatic and gravitational
potentials to have the same form.

6.9 Two Particles- Flat C With A Different Hamiltonian

According to Newtonian mechanics there is another Hamiltonian operator which
might be used, instead of (6.47), in the above argument

3
2
P
u=1

which is part of a more general Hamiltonian

(6.54a) H = +Q(Q); 0'=q1 QQ)=w(g)]

e
2m'

S B

u=I

, +Q(Q); Q=41 QQ)=w(g)]

1 1
6.54b) H = P’ +
( ) 2m, * 2m

The relationship between these Hamiltonians and that at (6.47) can be summarised as
follows:

1 1 1 , mm
(6.55) m,=m +m, =total mass; —=—+—=m'=—"2
m  m m, m,

= corrected mass

Define (with a change of notation) centre of gravity operators QO

o and coordinate

difference operators Q,
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(65621) QMl = Qu; Quz = Q(u+3); Quo EM; Q[: = QMZ _Qul

n,
and their conjugate momentum operators

1
(6.560) P,y =Pi Py=Fyu Bo=Bo+Boi P= (@ -P,)

which satisfy as identities (see Section 2)
(657) QMOPVO - I)\/OQMO = lhéuv19 Q;;_Pv’ - PVIQ = Zhéu\zl w,v = 1’2’3

Observe that

u=l1

3 1 3 6
(EPM )EE(EgZ/mI+Zg?/mZ ; see (6.47/54b)
J=

So the only difference between the Hamiltonian operators (6.47) and (6.54b) is the
assumption, at (6.54b), that w depends only on the coordinate differences. Also using
(6.54b)

- P1+Pp,2 e - ' . ' AVa
(659) QO = [H. 0 |- =——5= 0,00 = 0u0; = QL) = ALHQ,s

It follows that
(660) QMO = |_I—[’ QMO J= O

That is, the centre of gravity is in uniform motion providing that w depends only on the
coordinate differences. This fact we know from classical mechanics; but here it has been
deduced using only the operator calculus. Further, from (6.54b), using the operator
calculus

(6.61) Q;=[H,Q;J=i_i:Q;=|_H’Q';J _L’l_M’Q(Q)J | aQ(Q)
m, m,; m m aQM

which is the operator equation of motion of the coordinate differences. This equation can
be deduced using (6.54a/57). So, as foreshadowed at the beginning of this section, we can
use (6.54a) instead of either (6.47) or (6.54b) to deduce the equation governing w
providing that we accept that @ depends only on the coordinate differences.
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The expression (6.54a) has the appearance of a single particle Hamiltonian; see
(6.26). So we must choose n, =1,n, =3=>n, =3 and regard the coordinate differences

g’ as the coordinates ¢ inan E3. From (6.54a),

(6.62) g" = 6”,V ; u,v=123; see (6.26a)
2m'K

Thus (3.25) becomes
3
(6.63) Z g7g"0 ,, =0; 0=w=V*(V'w)=0; see (6.27)
SR=1

The remainder of the argument parallels that leading to (6.50) and on to (6.53).
6.10 Two Particles- Small Curvature Of C

We now examine the hypothesis that curvature of C characterises gravity. We
assert this hypothesis, above, when we attempt to match C to the space-time of GR by
choosing n, =4; n,=1. But there is an overriding problem connected with the setting

up of gravitational field equations: namely, the choice of a metric suitable to the
situation; and this problem persists even with the simplification that the gravitational field
is weak and can be represented by a single scalar function of the space-like coordinates
. The difficulty is that, with more than one particle, the dimension of C is a multiple of
that of P . This means that the potential complexity of the metric of C grows rapidly with
the number of particles. In general we do not have the prop of a corresponding
Hamiltonian (see the previous section) from which to ‘read off” a metric for C.

We can, however, make a start by considering what happens when there is no
gravity. There is a theorem, concerning flat spaces [9], pp. 59, 82, that allows the metric
of C to be of the form

(6.64a) ds” = Y e (dg')’; e, ==+l
7=

where the g are global, orthogonal and flat. The theorem states that we can always set up

locally Cartesian coordinates at a given point. If, however, C is flat then a single set of
these coordinates can be used everywhere in the space. Thus we have only to choose the
pattern €. Suppose that the pattern is known for P; for example, that P is Minkowskian

and its coordinates are Galilean. Then it is sufficient that the pattern of the ¢, consists of

a repetition of that which pertains in P with one repeat for every particle. If, in addition,
we scale the coordinates, by fixed factors, we do not change their orthogonal character;
the metric is still diagonal. Thus
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(6.64b)ds” = ¥ g, (dq’)"; g, =0V j=k
=

where the g, are constants.

When the gravity is weak the metric will, we suppose, approximate the forms
(6.64). One way to choose the metric of C, in the weak gravity case, is to equate the
coordinate accelerations, obtained from an invariant scalar potential w, with those given
by suitably approximated geodesic equations. The resulting equations link the Christoffel
symbols of C to the derivatives of w. We then require that the metric should be one that

satisfies these PDEs and demonstrates curvature; naturally, we choose the simplest that
will do.

Assume that P contains two particles (7,=2) and is Minkowskian with Galilean
coordinates (n, =4, n, =8). Thus particle 1 has mass m,, three spacelike coordinates
x',x*,x’ and one timelike coordinate x*; and particle 2 has mass m, , three spacelike

coordinates x°,x°, x” and one timelike coordinate x*. Suppose that all coordinates have
the physical dimension of length. Assume that the gravitational field depends only on the
instantaneous positions of the particles so that w is a function of the space-like
coordinates alone; this is consistent with the usual Newtonian approach. We have in mind
that, without gravity, the repeated Minkowski/ Galilean pattern is then appropriate for the
metric of C

(6.65) g.=¢ =-1-1-1L1,-1-1,-11; g, =0V j=k; sce (6.64a)
Ji J Jk

The approximate equations of motion, generated from w, are

(6.66) " = -Lm,u; ¥ -im,(w; =x=0; ()0=d(/dt

m, m,

where  has the dimensions of energy. Here Greek suffices have the range 1,2,3 while
Roman suffices have the range 1,2,...,8 . Unless stated otherwise we use this convention
for the rest of the calculation. The geodesic equations are, by contrast,

d’x' , dx' dx"

_r EErE——— iakal=1529-"98; r[ E]jglk(gik,j +gjk,i_gﬁ,k)=rj{i

6.67 =-T
(6.67) ds? * ds ds Y

Under the approximating assumptions

4 8
(6.68) ds = cdt; a;li ~1=i'=c; a;li ~1=1i'=~c; c is the speed of light
s s
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Thus, equating the accelerations (6.67/68),

1 dx' dx* 1 AT d_x’dik
ik

— 0 = czr,” —_—, —W = 5 = 152335
6.69) ™ H “ds ds’ om, Y ds ds= "
’ i gk i gk
CZI‘; di_dx —0; czl“i,f di_dx — (0
ds ds ds ds

Equating the coefficients of unity on either side of these equations

1
(6.70) mL“’M =G HTR) —w ) = ([ + L) =123
. 1 2

L, +0=0; I+ =0

.. dx* dx"Y )
The quantities T}, —, L
ds

are either first order small or zero. It
> 2
ds ~c'm c'm,

follows that we need not trouble to equate the coefficients of x' or of x'x’ at (6.69).

Any choice of the metric is allowed that both satisfies the equations (6.70) and
approaches (a possibly scaled version of) the form (6.65) uniformly as w — 0. We
therefore make a simple choice in the hope that it satisfies all the equations (6.70)! Thus

. _ ®
& ji ngk =0,/ =k u = ~Km; Eurayurd) = ~Km,; g, = g El"'KC_z;

1 1 )
6.71) g mo—; g 1 g o8 KDy,
( ) 8 Km, Km, & & c’

m,,m,,K >0

w
C

from which

1

1
wo_wm __ - . u+d) _pw+d) _ & .
I, =I%= O I, =Ik" = yE (ORI
c'm,

2 u?

(6.72) 2¢"m,
rf4 = rs?s = rf4 = rs?x =0

Therefore the metric (6.71) satisfies the equations (6.70).

We can calculate the Ricci tensor from

(6.73) R, ~T:,-T% ; ab,s=12,.8; [8], pp. 50, 52

a

because the I‘lf are either zero or small. We find
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(6 74) rass = %gSk (gak,s + gsk,a _gas,k) = %gaa(gaa,a +gaa7a _gaaﬂ)

_lgaagaa,u = Ova

2

; not summed on «a

(675) I‘asb,s = E [% gSS (gas,b + gbs,a - gab,s )],s = % E gSS (gas,bs + gbs,as - gab,ss)

N

From which it follows that the only surviving terms of the type (6.65) are (see (6.72))

, 1 ) ® 1 (V? V?
6.76 1—\3‘ — 1-\3 = ,up + J(u+4)(u+4) = _1+_2 (D,
( ) 44,5 88,s 2c2 E( 202

W\ M m, mm,
Therefore
2 2
©77) R ~-20F0us (Vi Vo) p 0V awb: see(6.73/74/76
aa 2 ab
2c m, m,

With the same approximations (4.8) becomes

(678) gE/ (Rab;ef + éRuebe) = gEf Rab,ef - O = 2 geeRaa,ee - O

e=l

Substituting (6.71 /77) into (6.78) we have the approximation

2

2 2?2 2 2
(6.79) Ous +0y (Vi +—Vz w=0= Vi +—Vz w=0; see (6.49¢)
2
2¢°K {my  m, m, m,

being the two particle result at (6.49¢).

The metric (6.71) suggests that the curvature of C resides in the time-like
partition. The question, as to whether the coordinate space is truly flat, can be resolved by
calculating the elements of the Riemann-Christoffel tensor

! l i
(6.80) R, ~T! -T

-jnp jn.p 2

to first order small quantities [8], p. 50

To demonstrate curvature we do not need to identify all the elements R_’jnp that may be

non-zero; it is sufficient to demonstrate that at least one does not vanish. Potentially non-
zero Christoffel symbols are
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1 1
wo_ T _ . (u+4) _ pu+d) _ .
I, =T%= Zm o, =TI = rm W (eays
(6.81) ! . ? ; see (6.72)
w
4 8 NPT _ 78 _ (u+4)
L=y = K?’ Cieay = Tyuany =K 202
whereas
J 1T/ =
(6.82) Fk,A = Fk,,g =0
giving for example
w w
WM M WY . pu T n _ sp
R.4V4 = I_‘44,\/ I_‘4\/,4 - 2 ’ R.44v = 1—‘4\/,4 1—‘44,\' - 2 ’
2¢"m, 2c"m,
w w
WM M WY L pu W TR e
(6'83)R.8v8 = I‘88,\/ FSV,S - 2 > R.88v = I‘8\/,8 I‘88,\/ - 2 ’
2¢"m, 2¢m,
4 4 4 . 8 8 8 _
R.4pw = I_‘4v,‘u - I_‘4pt,v = O’ R.S!.W = rSv,p. - FSH.,V - 0

Therefore, if any of the w , are non-zero, the coordinate space is curved; this is always

the case given the solution (6.7). Similar results hold when w is replaced by (u +4).

6.11 More Than Two Particles- Flat C

In order to discuss the case of 7, >2 we generalise the argument given in

Sections 6.8/9. The argument given in Section 6.10 can, almost certainly, be generalised
to the case n, > 2 ; but it introduces extra complications into a topic which is already

complicated.
We consider P to be E3 again. Then the simplest choice for the metric of C is

(6.84) g = d,; n.=3n

C P

Substituting (6.84) into (3.25)

np 2
Evi 0=0

(6.85) 2e,j,kk =
Js
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This equation, although elegant in appearance, does not give a context for 6. To provide
such a context we can generalise the Hamiltonian operator (6.47)

(6.86) H——EE +Q(0); Q=gl; QQ)=w(@); m,>0

where we use the same convention, for the notation of momenta, as pertains in Section
8.2. Greek indices run in the range 1,...,n ,> Roman Italic indices run in the range
1,...,n, ; Roman Text indices run in the range 1,2,3. The Hamiltonian (6.86) defines the

motion of a collection of Newtonian particles, in E3, under the scalar potential
0(q)-Then w is a candidate for 8 and comparison of (6.86) with (3.18) gives the metric

P . .
(6.87) g’ = T K j=12,...n; o=ipt(j/3)
m(l

Substitute (6.87) into (3.25) and we get

2

(6.88) 0=0; =0

n, 2
S
m

a a

after multiplying through by constants.

As before m must be a function of the invariants associated with the geometry of
the particles in P. These include n,(n, —1)/2 distances between the particles and various

angles etc. Because the angles etc. are functions of the distances we assume that o is a
function only of the distances

1/2
3

D (g - ””)} ; a=B=12...n,

]

(6.89) 1

+

=1,

where we use the same convention for notation of coordinates as at (6.86). When we
move the a” particle we change the distances lg ¥ B=a given o. Therefore, referring

to change of the coordinates of the y” particle,

n

-3ty 0 o -3 Oy 0w | Oy Oy %o
& og" oL, a(g")? 4| a(g") al, dg” dq" ol,,al

o=y a=y B=y

(6.90)

aqu

By

where (see (6.89))
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(6.91) alotﬁ ( Ja Jﬁ)(6 ) azl-(x[ﬂ — (6ay - 6[5\’ )2 1_ ( ja - Jﬁ)
aq" L LA i
and so
i 23, =1 i 0l O, =§ (" -4")(q" - ¢")®,, - D@, -1
(6.92) ' UL Loyl
' _ 3 (q/a _ JY)(qjﬁ _qJY)
=1 Lyl

) 2 N ool ool 2
Thusaa(i=za(?\:{ ;lwiaajf{n2=2 9 J?YZ aalm+ a(jT{aBJ\{Y alag;
¢ @0 Ay (") “ (¢") al, 097 9q° 0l Ol

Vios j nEp 0, a0l Oy O
94" | ”) o, ﬁ%aq” dg" ol,,al,
(6.93)
n, n, 2 n, 2 n, 2
=2 %%*Z% alaal =2 %%Jr a? ? +Zﬁ°‘m alaaz
o | Fay Yray - ay ~ By o | Fay Yoy ( ow) P ay "~ By
a=y B=y a=y E‘;jé
where

3 (qja _ jY)(qu _qjv)

(6.942) By, = > T = COS Py,
J=1 oy By
(6.94b) 0, =1V a=y; U, =0, == T =0Va=yap=y

and @, is the angle between the lines (TY and ﬁ .

For example if n, =3 and y =1 then (6.93) gives

2 2 2
(6.95a) Viw = 2 9 +£ g + 0 >+ d 2+2C05c931216— w
Zzl oy Ly 9l 9(Ly)" 9(ly) a(l;)a(l;,)

where
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(6.95b) 20, L5, cOos @y, = 1) + 15, = I3,
The appropriate version of (6.88) is

2 2 212
Vi L+&) w=0

m,m, My

(6.96) (

which can be written out explicitly by permuting the pairs of suffices in (6.95a). Consider
the simpler PDE

(6.97) (V v V)w=0

m - m, My

Solutions of (6.97) are also solutions of (6.96). Now suppose that w is assumed to be a
function of a single length / = /,, =/, (say). Then (6.97) reduces to

2 2 2
(6.98) 1 2d+d2 + ! 2d dz n=0= zi+d—2 w=0
ldl dl ldl dl [ dl dl
with solution

(6.99) w=-2+cy; C,,¢, are constants
21

Because (6.97) is linear the sum of all such solutions is also a solution of (6.96/97)

2 I I ) .
(6.100) o =—+ 1. + 1 +Cpp;  Cy15C315C30,Cyp  ATE CONStants
21 31 32

It is obvious from (6.93/94) that a generalisation of (6.100)

(6.100a) =c,, are constants

j— ap .

- / > ca[i_ Bo
a,| afd
a>fB

is always a solution of (6.88). There is nothing in the equations that prevents us from
defining

(6.100b) Cop = Gmamﬁ; see Newton’s law of gravity [3], [10]
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But, equally, there is nothing in the equations that requires (6.100b). Strictly, the m,, as

they appear in (6.100 b), are gravitational masses; whereas, as they appear in the
Hamiltonian (6.86), they are inertial masses.

The solutions (6.100/100a) are not, of course, the most general solutions of the
PDEs (6.96 /88); the general solutions will contain additional terms. But (6.100) does
show that pairs of particles are associated with an inverse distance potential term as in
(6.53). In general o is the sum of a regular function of the /,, and one or more singular

terms. The regular function has the property that it becomes constant as a/l the /,, — 0.
The singular terms have the property that if any of the associated /,, — 0 then w — @}

that is, a singularity is a symptom of the existence of two or more particles. Singular
terms like those at (6.100) generate an inverse square force, on a pair of particles, in the
direction of the line joining them. This dominates if the particles are close.

It might be, of course, that singularities of the kind (6.100) are not the only sort
possible. The solutions of (6.93) might contain singularities generated by inverse powers
or products of the /,;, of order greater than one. At short distances such singularities

could dominate those of the kind (6.100); in that case the force between close particles
would not be inverse square. This embarrassing eventuality seems unlikely; but it also
seems tricky to prove that it is impossible!

6.12 Introduction Of A Test Particle When 7 » > 1 And C Is Flat

When discussing gravity we often suppose that the field is sensed by a test
particle of infinitesimal mass. In GR the field is characterised by the way adjacent
geodesics of such test particles deviate from one another (equation of geodesic deviation
[9], p. 90]). Suppose that we introduce such a test particle in addition to the system of
particles of finite mass contained in P. Thus the number of particles increases from 7, to

n, +1. Let the infinitesimal mass be m, where y =n, +1. The PDE for o then reads

VZ ”I’ 2
(6-101)(m—y+2%) w=0; m,>>m Yoa€[lLn,]; y=n,+1; see (6.88)
v e Mo

Multiply by m; and we are left with the approximate PDE
(6.102) Vi (V?U)) —0; see (6.25b/27)

where
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n, a2 n, az
6.102a V W= + )0 w, Yy=n +1; see(6.93
(6.1022) E ol (L) ; ST TR (6.52)

a=p

which has solutions of the form w(/,,) V a€[l,n,]. In fact
(6.103) 0 =w,(l,p) + A, )V o.B; y=n,+1€[Ln,]

where

2
(6.103a) W, =0; VI(ViAw)—0; y=n,+1; sce (6.88/93)

n, 2
>
mO(

o

Thus, despite the reciprocal dependence on mass exhibited at (6.101), the introduction of
the test particle has no effect on the potential.

7. The Vector Potentials F/ And The Scalar Potential

From their positions in the RHS of (3.18)/ (3.19a) we would describe the
f?— F’ and v—V as gauge potentials. In what follows we discuss their formal
properties in the EM case.

7.1 Identification Of The Coefficients 7/ In The EM Case
If (4.1) holds then the path of X in C is a geodesic. But if
45) f/=03ja/vv=0

then the path of X in C is not a geodesic. The classical tensor equation of motion (derived
by eliminating the momenta from Hamilton’s equations acting on (3.19a)) is

m k-1

G"+Tq°q =

7.1
7D gy f,-g" fid, - f)——g’k(quk af; = fif)+ 2K, |+ [

where, of course, C may be curved. Now consider a single particle in Minkowskian P and
flat C. With Galilean coordinates the metric of C=P is

(7'2) gjk=0’]#kagﬂ=g”=_l,_1,—l,+1
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and, because the g’ are constant, (7.1) simplifies to

(7.3) G"=-g™ (f,,’,;(q'j —fj)+2Kv’m)+f,:” 7" ; not summed on m

Substituting the metric (7.2) into (7.3)

G =4’ (o= L)~ +2Kv,s @ =45 ¢ =4 fT=~fis [P= 1,

74 o, |
G =-q’ (fj,4 - f4,_;) + fzif; _2KV,4

where the Greek indices run from 1 to 3 and the Roman indices run from 1 to 4.

We now compare these equations of motion with those of a single charged
particle in an EM field

d(mq 4
(75) C (m?)=£(ﬂxé+cg) cd(mz )=ge'u; bEng, gE_Vq)_a_Q [5]
dq c dq

where: m is the mass, ¢ is the charge, ¢*/c is the proper time, q is the proper 3-

velocity, u is the 3-velocity, a is the 3-vector potential, ¢ is the scalar potential, b is the
3-magnetic induction, e is the 3-electric intensity. These SR equations have received
extensive experimental verification. Written in coordinate form (7.5) is

ALY, )0, 0,0)

(7.6) d(q 5 ’
mq ‘=
dq ( (au4+¢ )) dq e

Multiply through by dg* /cdt and we get

"]'x = i(q'u(au,x - ax,u) - q'4(¢,x + ax,4))
(7.7) me

.. ) . dq’
q4=_i(qu(ag,4+¢,u)) I= q4 3144:0
mc dq

These equations can be compared, directly, with (7.4) by regarding the gj as arbitrary.

The comparison yields
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€ €
fu,x - fw = _(%,x - ax,u); f4,x - fx,4 =——(0, +a,,);
me me

fif,=2Kv,; fif,=2Kv,

(7.8)

The first three of these equations relate the 4-curl of the f; to curla and grad¢ . But the

last two equations relate the gradient of v to f ] S - If we define

(7.9) 4Kv=fif, = aKv, = fif,+ [ f. =211, = fif, =2Kv,

then we get a result consistent with (7.8). In consequence (3.19a) can be written

(7.10) HEK(p“ +f—u)(pu + /s )

2K 2K

Taking account of (7.8), with appropriate definitions, this is
2

1 : € € ’ . _ 1 . _ € . _ €
(7.11) H=%(—E(PM+;%) +(P4—Z¢) ], = fu=%%’ f4=—m—c¢

u=l1

which can be shown to give the equations of motion (7.7) directly. Notice that the
definitions (of the f; in terms of the a, and¢) are sufficient but they may not be

necessary. This identification of the f; is classical because it is based on (3.19a).

7.2 The Impact Of The Theta Equation On Maxwell’s Equations

When there is but a single particle in P, and C=P is Minkowskian with Galilean
coordinates, the metric is

(7.12) g% =0,j=k g’ =g, =-1,-1,-1+1; n,=1; n,=4

p

The theta equation then becomes

2

(7.13) O*(0O%0)=0; O°=-V*+ ~3 q"/c is coordinate time

9
a(q")
Notice that solutions of

(7.14) O%0=0; standard wave equation [11]

are also solutions of (7.13). Because the f/ are candidates for 0 these results require that
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(7.15 O*(0O%a)=0; O*(0O°¢)=0; see (7.11)

We consider the impact of (7.15) on Maxwell’s equations in more detail, as
follows. With 3-vector notation Maxwell’s equations in the Lorentz gauge can be written
as follows [12]:

4y
(7.16) a)Ve=4mp: b)Vxe=-2: \Vb=0; d)Vxb= L€

dq, c dq,

(7.17) a)V.g+aa—q:=0; b)V.j+c;—p4=O; c) I:Izg=ﬂj; d) O%¢=4np
q N q c -

where

(7.18) b=Vxa;, e=-Vo- ;—% given the Lorentz condition (7.17a)
q

Given (7.16a/d), (7.17a) and (7.18) as definitions, five of the eight equations (7.16/17)
can be deduced as identities. The first two of the vector identities [12]

(7.19) Vx(Vp)=0; V.(Vxa)=0; Vx(Vxa)=V(V.a)-V’a

show that (7.16b/c) follow directly from (7.18). Regarding (7.16a) as a definition of p
result (7.17 d) follows from (7.17a). Regarding (7.16d) as a definition of j result (7.17b)

follows from (7.19) and (7.16a); similarly result (7.17¢) follows from (7.16d), (7.17a) and
the last of the identities (7.19). We can also show that the components of the force fields
satisfy the wave equation [11]

(7.20) O%e=0; O°b=0
We deduce from (7.15) and (7.17c/d) that
(721) O%j=0; O°p=0

That is the new equations (7.15) require that the current and charge densities satisfy the
standard wave equation. This result seems, at first sight, to be contrary to experience. The
equations (7.21) require that any disturbance in the current density j or the charge

density p shall be propagated with speed c. But Dirac’s theory of the electron/ positron

says that the instantaneous speed (of an electron/ positron), measured along any
Cartesian axis, is always = ¢ [1]. This is because Dirac’s speed operators (the ca s) do
not commute either with the Hamiltonian or with each other and have only the
eigenvalues =+ c. So, keeping in mind that the equations (7.16/17) represent a cloud of
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charged particles as an idealized, continuous, classical fluid, the equations (7.21) may not
be as contrary as might first appear. Note that the theta equation is a quantum equation; it
may therefore appear in quantum mechanical arguments along side Dirac’s equation.

If, of course, j =0 and p =0 then the space is empty of charge, (7.17¢/d) require

that the a’ satisfy the wave equation and (7.15) is satisfied trivially; the corresponding
particles must be photons. Keeping in mind that, the original rudimentary classical
model, from which the constraints are derived, has structureless point particles moving in
an otherwise empty space, it seems the assumptions j =0 and p =0 are appropriate. The

Maxwell equations with j =0 and p = 0 appear to be essentially classical.

8. Notes On The ANPA References

[19] This reference is a general paper on time. It does not consider the relativistic
properties of time because to do so, before an ANPA audience, would be to ‘carry coals
to Newcastle’! It does, however, consider quantum time and the phenomenon of chaos.

[20] The work on Constraints Theory, together with its implications, was first begun in
this reference. No formal proof, that constraint 1 requires the Hamiltonian to be a
polynomial of order not exceeding 2, is given; but examples strongly suggest this.
Various proofs have been tried. The proof given in Section 3 is favoured because it does
not assume, ab initio, that H is a polynomial. The Theta Equation is not derived in [20]
but, again, examples foreshadow it.

[21]  Much of the work described above is sketched in graphical form along with some
textual argument.

[22]  This sprawling paper is a flawed effort to explain some of the structures of CM by
assuming that the measurement of rate is an averaging process. Dirac [1] invoked this
idea, successfully, to explain how his velocity operators (eigenvalues +c ) give rise to
observations subject to the classical SR relations governing velocity and momentum.
These notions pertain to Constraints Theory because it can be shown that linear
Hamiltonians, with constant matrix coefficients (of finite order), satisfy the constraints to,
at least, level 3. The matrices, of course, have discrete eigenvalues; and all but one of
them are velocity operators. Considerable effort has been focussed, subsequent to [22],
on related topics. But the results are not definite; and so they are not reported here. Some
of the work on linear Hamiltonians is given in drafts 1 and 2 of An Overview of
Constraints Theory (progenitors of this document). The references [16,17,18] appear in
these documents.

9. Linear Hamiltonians With Matrix Coefficients- A New Chapter?
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The only definite result concerning linear Hamiltonians, with constant matrix
coefficients, is that they satisfy the constraints, without caveats, at least to level 3. They
are of importance because the Dirac equation derives from a linear Hamiltonian with
matrix coefficients that are either functions of the coordinates or constant. One
complication that arises, in the investigation of such Hamiltonians in Constraint Theory,
is that, ostensibly, every matrix coefficient is a candidate for 6. To study them is to take
us outside our self-imposed remit of deriving CM from QM. Nevertheless, there are
partial results. A topic that needs investigation in relation to Hamiltonians, in general, and
linear Hamiltonians, particular, is that of constants of the motion. For example, the
angular momentum operators (see Section 2.10 above) are constants of the Dirac
Hamiltonian only if spin operators are added. The significance of constants of the motion
in QM is that, because they commute with the Hamiltonian, they can be averaged, in the
course of measurement, for an indefinite time. They therefore exhibit classical
permanence and structure.

Perhaps, if we can get together enough definite results, we should add a chapter
on linear Hamiltonians with matrix coefficients. My feeling is that, although slippery,
they may provide, through Constraint Theory, a strong explanation of the physical
importance of Euclidean 3-space and Minkowskian 4-space; see Section 6.2 above.

A. M. Deakin 18/11/2008
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