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MATHEMATICAL NOTES- Constraints Theory (Draft 4) 
 
0.  Overview 
 
The colour coding of the text in this document is defined as follows: 
 
Black  Original Draft 3 text 
Red  New text 
Dark Red New text about which we may wish to say more 
Green  Possibly delete or abbreviate 
Blue  Original Draft 3 text that needs more work 
 

This mathematical discussion is in terms of scalar Hamiltonians for Classical 
Mechanics (CM) [14], [15] and Hermitian symmetric operator Hamiltonians for Quantum 
Mechanics (QM); these Hamiltonians are, ostensibly, independent of time. This avoids 
the complexities of the path integral method but restricts the argument to simple, isolated 
systems composed of particles that do not change or lose their identity. The discussion is 
thereby restricted to quantum systems that have a classical counterpart. 

 
We begin with a classical archetype of point particles moving in a space P about 

which nothing is specified other than that it is continuous. The system of particles is 
associated with one or more functions ! of the coordinates q . The function or functions 
!  is/ are assumed to be continuous and differentiable; and the coordinates are assumed to 
be continuous, differentiable functions of a single time measure t . It is possible to derive, 
from ! , an infinite set of scalar differential identities. From each of these an operator 
relation can be derived by a process of quantization. This process treats the scalar 
identities as if they were equations of motion. But the operator relations, called 
constraints, turn out not to be identities. As a consequence of the rules of quantization an 
operator analogue of Hamilton’s equations holds. 

 
These notes are concerned with the mathematical consequences of the constraints 

and their implications, if any, for physics. Typical of the questions asked are: Do the 
constraints apply to classical physics, quantum physics or both? What is the physical 
significance of the hierarchy of constraints? If, as appears likely, the constraints apply, 
principally, to classical physics can we recognise the laws of classical physics among 
their patterns? If so are there deviations, from the cannon laws, that might be interpreted 
as new physics? Are there internal inconsistencies in the constraints? Is it necessary to 
consider the whole of the infinite hierarchy of constraints, to describe classical physics, 
or is it sufficient to consider only a few of them? How reliable is our chosen method of 
quantization? 

 
In summary: The constraints are shown to be related to the assumptions of 

continuity and differentiability that are necessary to derive the differential identities. The 
order of the derivatives in an identity fixes the position of the corresponding constraint in 
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the hierarchy. Thus, the higher the level at which all the constraints are satisfied, the 
closer the operator description is to a classical ideal. 

 
Given that !  is arbitrary the first constraint requires that the operator Hamiltonian 

is quadratic in the operators that are conjugate to the coordinate operators; this justifies 
reference to the former set as ‘momenta’. The second constraint, when combined with the 
first, produces  what looks like an operator field equation involving the operator !  that 
represents ! ; this is called the Operator Theta Equation. Functions of the coordinate 
operators that appear in the Hamiltonian form are candidates for ! . In order that the 
spectra of coordinate velocities shall be continuous !  cannot be a matrix; and it is this 
condition that ties the pattern of constraints to the laws of classical physics. It further 
appears that the first two constraints, only, are needed to describe the situations to which 
classical mechanics applies. We do not, however, have a definite theorem to this effect. 

 
Reverse quantization of the general quadratic operator Hamiltonian and of the 

theta equation, produces recognisable expressions that belong to classical mechanics; 
these are called the Scalar Hamiltonian and the Scalar Theta Equation respectively. It is 
to be noted that, while the solutions of most conventional field equations satisfy 
appropriate versions of the scalar theta equation, not all solutions of that equation satisfy 
conventional equations. The reason is that the scalar theta equation, considered as a PDE, 
is of fourth order; new, or at any rate extra, physics is to be expected. The scalar 
Hamiltonian satisfies the classical Hamilton’s equations. 

 
Arbitrary functions of the coordinates vuuv

gg =  appear as coefficients of the 
second order terms in the general scalar Hamiltonian. Hamilton’s equations are 
recognisable as the generalised geodesic equations, with metric tensor vuuv

gg = , of an 
higher dimension Riemannian space C. The coordinates of C are the aggregate q  of the 
coordinates of all the particles contained in P. In consequence P is Riemannian; (C may 
be made to reduce to P under special circumstances). The geodesic equations, referred to 
C, describe the motion of a single representative point Q in C and, in consequence, the 
motions of all the particles in P. 

 
Also, in the scalar Hamiltonian form, are arbitrary functions that, in ordinary 

physical space, would be described as gauge potentials. The rules of quantization require 
that P is flat and that the particle coordinates are orthogonal for each particle and flat; it 
follows that C is flat with flat coordinates. 

 
Now consider a Riemannian space C' that is of the same dimension as C and may 

be curved with curvilinear coordinates x . Suppose that C' is tangential to C at the point Q 
in C, with coordinates q , and at the point X in C’  with coordinates x . Suppose also that 
the x  are geodesic with pole X. Then, at the pole, we may choose xdqd =  and the 

functions uv
g  may also be chosen as the metric tensor of C'  with geodesic coordinates x . 
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We now drop the prime on C'  and assume that C may be curved; in the text we use the 
notation q  for coordinates when C is flat and x  for coordinates when C is curved.  

 
The question then arises: Which tensor equation, with metric tensor vuuv

gg = ,  
reduces to the scalar theta equation when the coordinates are geodesic? The answer is the 
Kilmister Equation referred to here as the K equation. Notice that the K equation is not a 
quantum equation. It derives, ultimately, from a reverse quantisation of an operator 
Hamiltonian; it is, therefore classical. Various properties of C and the K equation can be 
deduced analytically. For example: the original time measure t  is a geodesic distance in 
C; if the Ricci tensor of C vanishes then, the K equation is also satisfied, but there are 
solutions of the Kilmister equation for which the Ricci tensor is non-zero; when either the 
Ricci or Kilmister tensors vanish the dimension of C must be at least four for the space to 
be curved; because, in CT, it is axiomatic that each particle has only one time coordinate 
the remainder are space-like. 

 
When the dimension of C is four, and there is only one particle in P,  the K 

equation makes contact with General Relativity (GR). The resulting relativistic K 
equation makes no mention of matter; it is a set of up to ten PDEs that, given four sets of 
boundary conditions, describe the evolution of the metric tensor of C. Thus, through 
Einstein’s equation, it describes a possible evolution of the matter-energy-momentum-
stress tensor a

b
T . In the classical archetype, with which CT begins, the space between 

particles, in P, is assumed empty; but there seems to be no barrier to assuming that a

b
T  

describes a continuum. Notice that if space-time is truly empty then the relativistic K 
equation requires that Einstein’s cosmological constant !  is zero. Thus we are gambling; 
either the K equation describes the real world, at a classical level, or it does not! 

 
The relativistic K equation is much more complicated than the Einstein equation. 

Detailed conclusions have only been deduced either by approximate analytic arguments, 
which assume low velocities and low curvature, or by machine calculations most of 
which are approximate in other ways. 

 
The results of machine calculations can be summarised as follows: Analytic 

formulae are confirmed. With the cosmological metric (corresponding to an 
homogeneous, isotropic space-time) two unique and exact solutions are obtained; but 
they represent empty model universes. Various perturbations of these exact solutions 
represent model universes which are considered to be well expanded, contain uniform, 
low density distributions of matter-energy and have roughly constant Hubble parameters. 
All these model universes, once expanding, continue so to do. 

 
 We have modified the cosmological metric so that it is possible for it to describe 

weak gravity as a local perturbation. One class of these perturbation solutions expands at 
an almost constant rate, does not permit Newtonian gravity and may represent an early 
phase when the universe was filled only with radiation. The other class expands at a 
much lower rate, permits Newtonian gravity and has a matter-energy density !  which is 
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a sum of two terms 
0
!  and 

00
! . The term 

0
!  is the square of a real and so is positive. The 

term 
00
!  can have either sign and arises because the K equation is of fourth order. The 

term 
0
!  is interpreted as ordinary mass density possibly including Dark Matter. The term 

00
!  is interpreted as a vacuum energy; if 0

00
<!  it could be an explanation of the Dark 

Energy effect. Note that the condensation of matter from an high density radiation field is 
a quantum phenomenon and thus outwith the competence of the K equation. 

 
These machine solutions represent the local behaviour (less than 9

10  parsecs say) 
of well-expanded model universes; thus, if they have relevance to the actual universe, it 
cannot be to a very early phase. The cosmological metric is probably inappropriate to 
such a phase. So, in order to explore solutions of the K equation that might represent the 
early universe, we would need to choose a metrical form of an inhomogeneous, 
anisotropic space. This is an impediment to further progress. 

 
We have studied flat or nearly flat spaces C by various means. Suppose that two 

particles in an E3 move, in a scalar potential ! , under Newtonian mechanics. Let the 
coordinates be Cartesian so that P is E3 with a unit diagonal metric. By writing out the 
classical Hamiltonian we see that C is a scaled E6 with a constant, diagonal metric. The 
potential !  is the only candidate for ! . The theta equation is therefore a PDE for the 
scalar potential ! . According to Einstein !  must be an invariant in P. The theta equation 
then reduces to 
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where l  is the distance between the particles. It follows that the only valid solution is 

 

(0.2) 
4143

2

2

1 ,....,; ccclclc
l

c
+++=!  are constants of integration 

 
The lc /

1
 term gives an inverse square force along the line joining the particles; 

4
c  

defines an arbitrary potential floor. The term lclc
3

2

2
+  arises because the theta equation 

is of fourth order. It may be new physics; but to have evaded experimental detection it 
must be either very small, at laboratory distances, or the constants 

2
c  and 

3
c must be 

zero. Notice that the above argument gives no clue as to whether !  is an electrostatic 
potential or a weak gravitational potential. 
 
 The generalisation of this argument considers 2>

p
n  particles moving in a scalar 

field !  in E3. P is an E3 and C, given Cartesian coordinates, is a scaled E
p
n3 . Again !  

is the only candidate for ! , is governed by the theta equation and must be an invariant in 
P. The theta equation, in this general case, is very much more complicated involving the 
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distances !""! = ll  between the th
!  and th!  particles in P. For example when 3=

p
n  the 

theta equation reduces to 
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where 
 
(0.4) 2

32

2

31

2

2131213121
cos2 lllll !+="  

 
It is obvious that 
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+++=!   are constants 

 
is a particular solution of (0.3). This solution contains only terms that give the expected 
inverse square forces. But the general solution contains cross-terms. Provided that the 
only singularities are first order these cross-terms are contained in the regular part of the 
solution (0.5); and that is dominated by the singular part when the distances are small 
enough. 
 
 A more complicated calculation, in the 2=

p
n  case, assumes that C is slightly 

curved and invokes the K equation to see what happens to the two particles. In order to 
allow comparison with previous calculations is assumed that the motions can be 
described, at least approximately, by a scalar potential ! . C has 8 dimensions and 
approximates a double Minkowski space. We connect !  to the metric tensor via the 
equations of motion in C (the geodesic equation and those involving derivatives of !). 
We then express the Ricci tensor in terms of the derivatives of !  and approximate the K 
equation. The result is the same PDE as is obtained with the flat-space E6 Newtonian 
argument; it reduces to (0.1). This demonstration supports the notion that in order, at the 
least, to describe gravity C must be curved. 
 
 We have also studied the impact of CT on classical EM theory. The general 
quadratic scalar Hamiltonian, which is obtained from constraint 1, is compared with the 
classical Special Relativity (SR) Hamiltonian for a single charged particle moving in an 
EM field; C!P  is chosen to be Minkowskian. The coefficients of the square terms in the 
CT Hamiltonian compare with those of the EM Hamiltonian; further, the coefficients of 
the linear terms in the CT Hamiltonian are related directly to the EM vector and scalar 
potentials. 
 
 CT has no impact on classical EM theory provided that the space between point, 
charged particles in P is considered empty. If a cloud of charged particles in P is 
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represented, instead, by a charge density !  and a current vector i  then !  and the 
components of i  are subject to the wave equation. 
 
 As we climb the hierarchy of constraints their complexity increases hyper-
exponentially. It is therefore very difficult to produce general theorems concerning their 
structure. This text contains some simple deductions. Irrespective of !  linear operator 
Hamiltonians, with constant scalar coefficients, satisfy all the constraints. The quadratic 
operator Hamiltonian mP /

2 , where P  is a Cartesian momentum and m  is a scalar, also 
satisfies all the constraints given that !  satisfies the theta equation. The quadratic form 
 

(0.6) 1;
2

1

±!""!#
=

jjj

n

j

jjPH
c

 

 
satisfies the constraints up to at least level 4 providing that !  satisfies the theta equation. 
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1. The Particle Space P - Differential Identities 
 

We begin with a classical model of structureless point particles moving in a 
continuous space P. The coordinates },,,....,{ 21

dpc

n
nnnqqqq c !!  where 

p
n  is the 

number of particles and 
d
n  the dimension of the space, are functions of a continuous time 

measure t ; this measure is the time of the consciousness and the clock of a single 
observer [19]. We write an hierarchy of differential identities for dtd /,...;, !"!!! &&&&  
where )(q!  is any function of the coordinates characteristic of the model (e.g., a scalar 
potential, an element of a vector potential, an element of the fundamental tensor, a 
curvilinear coordinate). These are the scalar identities mentioned above. Note that the 
coordinates are numbered by superfixes in order to implement the Einstein summation 
convention [20]. 

 
 Given a function )(q!  of the coordinates )(tq  the first four of the infinite 
hierarchy of differential identities are: 
 

(1.1) 
jjj

j

q
q

dt

d

!

"!
#""=

"
#"

,,
;&&  

(1.2) 
kj

2

jkjk

kj

j

j

qq
qqq

!!

"!
#""+"="

,,,
;&&&&&&  

 
(1.3) ;3

,,, jkl

lkj

jk

kj

j

j qqqqqq !+!+!=! &&&&&&&&&&&&  
 

(1.4) 
pdc

ijkl

lkji

ijk

kji

ij

jiji

i

i

nnnlkji

qqqqqqqqqqqq

!=

"+"+"++"="

,...2,1,,,

;6)34( ,,,,
&&&&&&&&&&&&&&&&&&&&

&&&&

 

 
The Einstein summation convention is in force; and, unless otherwise stated, all indices 
lie in the range ],[

c
n1 . Observe that the identities increase in complexity, very fast, as the 

order of the time derivative of !  rises. Kauffman has devised a recursive formula for the 
general case. This formula may be suitable for computer calculations. 
 
 
2. Quantization 
 

We quantize the identities by substituting Hermitian symmetrical operators, for 
scalar observables, according to the method of Schrödinger. The resulting expressions are 
then subject to non-commuting algebras [13], [21] which have application to both physics 
and mathematics. 

 
The quantization rules require that P is Riemannian flat and that the coordinates 

q  are also flat (the coordinates of a single particle are local Cartesian at every point in 
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the space). It may be that these last two rules are not essential; but they turn out to be 
consistent with all that can be deduced from the other quantization rules. 
 
2.1 Notations 
 
 Observables (denoted lower case) are represented by operators (denoted upper 
case). The only exception to this rule is the Hamiltonian which is always denoted upper 
case; the context indicates whether the CM scalar or QM operator is intended. If the 
observables are real then the operators have Hermitian symmetry and hence real spectra. 
 

(2.1) ,....,;;; 21nA
dt

ad
AA

dt

da
aAa

n

n

n1

=!"!"! &&  

 
where ''!  means ‘is represented by the operator’. 
 

(2.2a) ! " ],[,;],[ BA
i

BABAABBA
h

#$#  

 

(2.2b) 
! " ! "! " ! " ! "! "DCBADCBACBACBA

DCBADCBACBACBA

,,,,,,;,,,,

]];,,[,[],,,[]];,[,[],,[

##

##
 

 
(2.3) ! " ! "kk

jj

kk

jj QAAAPAQqPp ,;,;;
:

,
##$$  

 
(2.4) { } !"

perm

nnn AAAAAA ....,...,,
21!

1

21  

 
where the commas on the LHS are inserted, if need be, only for clarity. The order of the 
arguments in {}.  is immaterial. Notice that if an element inside any of the brackets 

!" {}.,.[.],  is null then the bracket is null. 
 
 We combine these notations with the Einstein summation convention in a manner 
illustrated by the following examples: 
 

(2.4a) [ ] ( ) ! " [ ]vw
u
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u
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u
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(2.4b) { } ! "
#
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&

'
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x
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uv

uvw

x AAAAAA
,!3

1
,,  

 
where, in this example and for simplicity, A  happens to be an invariant. 
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2.2 Schrödinger’s Rules For Quantization 
 
 Schrödinger begins with a classical energy equation that expresses the total 
energy of a single particle system (the electron in the hydrogen atom) as the sum of its 
kinetic and  potential energies 
 
(2.5) ( ) )(

2

1 2

3

2

2

2

1 qvppp
m

e +++! ;  Newtonian approximation 

 
He then replaces the scalars (energy e , Cartesian components of momentum 

321
,, ppp , 

Cartesian coordinates 
321

,, qqq  and the potential energy )(qv ) by Hermitian symmetric 
operators 
 

(2.6) ( ) )(
2

1 2

3

2

2

2

1 QVPPP
m

HE +++!!  

 
In the Schrödinger coordinate representation (Q-diagonal) these operators are 
 

(2.7) 
!<<!"!<<!"

#$#
%

%
"#

%

%
##

k

j

kk

jj

qp

IqvQVIqQ
q

iP
t

iHE

;

)()(;; hh

  

 
where I  is the unit operator and the mass m  is taken as a c-number. He allows the first 
expression (2.7) to act on a wave function ),( tq!  regarded as a vector in an Hilbert 
space. The assumption that t  is a scalar that commutes with all operators produces a PDE 
which can be solved for the function ),( tq! . The result is the Schrödinger Evolution. 
 

(2.8) )0,()/exp(),(),(
),(

qiHttqtqH
t

tq
i !"=!#!=

$

!$
hh  

 
By substituting (2.6/7) on the RHS of the PDE he gets his famous wave equation 
 

(2.9) ),()(
2

),(
2

2

tqqv
mt

tq
i !""

#

$
%%
&

'
+()=

*

!* h
h  

 
2.3 Multiples, Powers, Sums And Products 
 

From Schrödinger’s rules we deduce the following generalizations: Suppose that 
 
(2.10) BbAa !! ;  
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where ba,  are real, scalar observables and BA,  are their representative operators. Then 
for multiples, integer powers, sums (weighted by c-numbers !", ) and products 
 
(2.11) ,....2,1;2/)(;; =+!"+#!"+##!# mBAABabBAbaAa

mm  [4] 
 
whether or not A  and B  commute. From these formulae Kauffman deduces 
 

(2.12) { }n
perm

nnn

n

j

jj

n

j

jj AAAAAAaaaAa ,...,,........;
2121!

1

21

11

!"#"# $$$
==

  [Kauffman] 

 
whether or not the jA  mutually commute. Notice how, at (2.4a/b), this last formula may 
be combined with the summation convention. 
 
2.4 Coordinates And Momenta 
 
 It follows from (2.7) that, in symbols, 
 
(2.13) 3,2,1,;;; =!="== kjIiQPPQQQQQPPPP j

k

j

kk

jjkkj

jkkj h  
 
We assume, in addition, that these relations hold for all the coordinates of all the particles 
in P. That is 
 
(2.14)  cnkj ,....2,1, =  
 
This assumption takes us beyond Schrödinger’s original rules; but it has been successful 
in models of multi-electron atoms. 
 
 Suppose that the operator j

Q  has a continuous spectrum in the range ],[ !"! ; see 
(2.7). Then it can be proved that, if jP  satisfies (2.13) then, jP  is also an operator with a 

continuous spectrum in the range ],[ !"! ;  so j
Q  always has such a conjugate. What 

justification have we to call jP  a momentum operator representing a classical component 
of momentum?  At this stage in the argument, none, save the success of Schrodinger’s 
wave equation. Later we shall produce a more cogent argument. 
 
2.5 The Schrödinger Representations And Time 
 

In the Schrödinger representation the operators are independent of the time. From 
the rules so far given we can generalize as follows: 

 
In the Q-diagonal Schrödinger representation 
 
(2.15a) IqIqaQAqaIqQq

jjjj ;;)()()(; !<<!"#$#$   is the unit operator 
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(2.15b) )()()(; PbPBpb
q

iPp
kkk !"

#

#
$!" h  

 
In the P-diagonal Schrödinger representation 
 
(2.16a) IpIpbPBpbIpPp j

jjj ;;)()()(; !<<!"#$#$   is the unit operator 

(2.16b) )()()(; QaQAqa
p

iQq
kkk !"

#

#
!" h  

 
Notice that in this representation the symbols QP,  still satisfy (2.13) as they should. The 
connection between the Q-diagonal and P-diagonal Schrödinger representations is the 
multivariate Fourier transform. 
 

Time is treated according to the rule 
 
(2.17) ! "AHAa ,#$ &&  
 
2.6 The Heisenberg Representation And Time 
 
 In the Schrödinger representations the operators are independent of time and the 
state vectors depend on time. In the Heisenberg representations the operators depend on 
time and the state vectors are independent of time. The connection between a Schrödinger 
operator A  and the corresponding Heisenberg operator )(tA  is 
 
(2.18) '');/exp()();()()( +!"=

+
hiHttUtAUtUtA  denotes Hermitian transpose 

 
By differentiating (2.18) we get an Heisenberg representation of a&  
 
(2.19) ! " ! " HtHtUAHtUtAHtA ===

+ )();(,)()(,)(& ;  see (2.17) 
 
This is consistent with (2.17) because 
 
(2.20) ItIItUtUtUtU ===

++ )(;)()()()(  
 
or by setting 0=t  in (2.19) just as ).0(AA =   
 
2.7 Derivatives With Respect To Coordinates And Momenta 
 
 Suppose that the operator A  is a multinomial in the operators QP, . What are the 
rules for calculating (see (2.2a)) 
 

(2.21) ! " ! " ?)(,);(, :

, AQAQ
i

QAAAPAP
i

APA kkkk

jjjj #$$#$$
hh
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It can be shown that the rules can be summarized in the statements 
 

(2.22) 
k

k

jj
P

A
A

Q

A
A

!

!
=

!

!
=

:

,
;  

 
as if k

jk

j PQAAA ,,,,
:

,
 are scalars providing that the order of non-commuting operators is 

preserved; see (2.13). Now suppose that A  is pure in the P ; that is, none of the Q  

appear in the expression for A . Then we deduce that k
A
:  is pure in the P  and is 

structured like the scalar partial derivative because all the terms in k
A
:  commute 

 

(2.23a) 
k

k

P

PA
PA

!

!
=

)(
)(:  

 
Similarly, if A  is pure in the Q  then jA,  is pure in the Q  and is structured like the scalar 
partial derivative because all the terms in jA,  commute 
 

(2.23b) 
jj

Q

QA
QA

!

!
=

)(
)(,  

 
Finally, if A  is pure (either in the P  or the Q ) then, it can be proved, that the results 
(2.23) apply even when A  is not a multinomial. It is necessary for the scalar partial 
derivatives kppa !! /)(  or j

qqa !! /)( , where Aa! , to exist. Kauffman calls 
commutators like (2.21) derivations. 
 
 Notice that 
 
(2.23c) jkkj

jkkj AAAA ::::

,,,,
; ==  

 
are identities for any operator A . In particular, if A  is pure in the P  then, 
 

(2.23d) kj

jkkj

jkjkkj a
pp

a

pp

a
aAA :

22

:::::
!

""

"
=

""

"
!#=  

 
using the P-diagonal Schrodinger representation and , if A  is pure in the Q  then, 
 

(2.23e) kj

jkkj

jkjkkj a
qq

a

qq

a
aAA

,

22

,,,,,
!

""

"
=

""

"
!#=  

 
using the Q-diagonal Schrodinger representation. 
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 Now, by definition, 
 
(2.24) )()( Qq !"#  
 
where !  is pure in the Q . It follows that 
 
(2.25) 

....,,,...., kjiijk !"# ;  see (1.1….4) and (2.23b) 
 
where, from (2.23c/…/e), the order of the suffices is immaterial. For example 
 
(2.25a) Ocurlcurl =!"=# 0  
 
are both identities. 
 
2.8 Quantization Of The Differential Identities 
 
 We now have all the rules needed to quantize the differential identities (1.1….4). 
The quantizations of the first four identities, using the notations of Section 2.1, are: 
 
(2.26) { } ! "#=#$ ,,

,

:

1
HHZ j

j  
 
(2.27) ! "{ } { } ! "#=#+#$ ,,,,,,

,,

::

,

:

2
HHHHHHZ kj

kj

j

j  
 

(2.28) ! "{ } ! "{ } { }
! "#=

#+#+#$

,,,

,,,,,,3,,,
,,,

:::

,,

::

,

:

3

HHH

HHHHHHHHHZ lkj

lkj

kj

kj

j

j

 

 

(2.29) 
! "{ } ! "{ } ! "! "{ }
! "{ } { }
! "#=

#+#+

#+#+#$

,,,,

,,,,,,,,6

,,,,3,,,,4,,,,

,,,

::::

,,,

:::

,,

::

,,

:

,

:

4

HHHH

HHHHHHHH

HHHHHHHHHHHHZ

lkji

lkji

kji

kji

ji

ji

ji

ji

i

i

 

 
where, in particular, the operators (expressed in the Q-diagonal Schrödinger 
representation) 
 
(2.30) IIIIqQ jkllkjjkkjjj ,,,,,,,,, ;;;)()( !!!! ="="="#"   etc. 
 
are pure in the Q . The 

n
Z  are defined as the LHSs of the quantizations written in the 

above form; they are used below. 
 
2.9 Apparent Ambiguity And Its Resolution- The First Quantization  
 
 The identity (1.1) is the sum of two-term products on the RHS 
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(2.31) 

j

j
q

,
!"! &&  

 
So the RHS of its quantization 
 
(2.32) ! " { }jj

HH
,

:
,, #=# ;  see (2.26) 

 
is, in our notation, the two-term curly bracket with its implied summation. This simple 
structure arises because we do not enquire as to the form of the Hamiltonian either as a 
classical scalar with 
 

(2.33) 
j

j

p

H
q

!

!
=&  

 
or as an Hermitian operator with 
 
(2.34) jj

HQ
:

=&  
 
 Suppose, for example, that we choose the general quadratic form 
 
(2.35a) { } { } VFGGGQVPQFPPQGH

juvvuuv

j

j

vu

uv ,,;);(),(,),( =++!  Hermitian 
 
with a reverse quantization 
 
(2.35b) )()()( qvpqfppqgH j

j

vu

uv
++!  

 
Scalar (2.35b) is the classical analogue of operator (2.35a). If we quantize (2.35b) we 
should get (2.35a). But there may be ambiguity. For we might quantize (2.35b) as 
 
(2.35c) { } { } )(),(),( QVPQFPPQGH j

j

vu

uv ++! ;  the 
u
P  mutually commute 

 
regarding 

vu
pp  as a single scalar. But the operator { }

vu

uv
PPG ,,  may differ from the 

operator { }
vu

uv
PPG , . We can analyse this situation as follows: According to the rules 

(2.4b/12) product 
 

(2.36) { } [ ]CBACABBCABACACBABCCBAabc +++++=!
!3

1
,,  

 
where cba ,,  are real scalars and CBA ,,  are Hermitian operators. But if  
 
(2.37) )()(,,, ABCCABCBBCCAACBAAB !!!=  
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then we might say 
 
(2.38) { }CABcab ,)( !  
 
For this to be consistent with (2.36/37) 
 

(2.39) 
[ ] [ ]

BCACABBCCBA

CABABCCABBCAACBABC

!=!"

+=+++

)(

2

1
22

6

1

 

 
As a general result (2.39) looks most unpromising; but, if we apply it to (2.35a/c), we 
find that 
 
(2.40) { } { }

vu

uv

vu

uv
PPGPPG ,,, = ;  summed 

 
only if 
 

(2.41) 
u

uv

vvu

uvuv

vu
PGPPPGGP

i
!=!

,

h ;  summed;  see (2.39) 

 
But this is an identity; see Section 2.7. So (2.40) is always true and it does not matter 
which of the quantizations (2.35a/c) we arrive at from (2.35b). 
 
 Returning to the quantization (2.31/32): we note that with the classical 
Hamiltonian (2.35b) we have 
 

(2.42a) j

u

uj

j

j fpg
p

H
q +=

!

!
= 2&  

 
with quantization 
 
(2.42b) { } j

u

ujj
FPGQ += ,2&  

 
Alternatively, with the operator Hamiltonian (2.35c), we may use the rules of Section 2.7 
to arrive directly at 
 
(2.42c) { } j

u

ujjj
FPGHQ +== ,2

:& ;  see (2.34). 
 
Given (2.42a) the identity (2.31) becomes 
 
(2.43a) ( ) j

j

u

uj

j

j fpgq
,,

2 !+=!=! &&  
 
with quantization 



 16 

 
(2.43b) ! " { } { }jj

u

uj

j FPGH
,,

,,,2, #+#=#  
 
Applying (2.39) 
 
(2.44a) { } { }uuj

ju

uj

j PGPG ,,,
,,

!=!  
 
only if 
 

(2.44b) ju

ujuj

ju

uj

u PGGPG
i

,,,
!"!=

h  

 
which turns out to be an identity. But it also turns out that, given (2.42c), the last equation 
 
(2.45) { } { }{ } { } { }jj

u

uj

jj

j

u

uj

j

j
FPGFPGH

,,,,

:
,,2,,2, !+!=!+=!  

 
is an identity. Thus the quantization (2.31/32) is consistent with (2.35a/c), (2.42b/c) and 
(2.43a/b) however arrived at; (i.e., either by quantizing classical expressions or by 
applying operator algebra according to the above rules). 
 
 We have shown that, given the quadratic Hamiltonians (2.35a/c), apparent 
ambiguities, associated with the simplest quantization (2.26), are illusory. We must 
always keep in mind, however, the possibility that the higher level quantizations (2.27) et 
seq. might be either ambiguous or inconsistent. 
 
2.10 Poisson Brackets- An Alternative Method Of Quantization 
 
 Suppose that ),,( tqpf  is a classical dynamical variable associated with the 
system of particles in P. Then 
 

(2.46) 

t

f

q

H

p

f

p

H

q

f

t

f
q

q

f
p

p

f
f

j

jk

k

k

kj

j

!

!
+

!

!

!

!
"

!

!

!

!
=

!

!
+

!

!
+

!

!
= &&&

;  summation convention in force cnkj ,...,2,1,; =  

 
where H  is the classical Hamiltonian. The quantity 
 

(2.47) ),(),( fHPB
q

H

p

f

p

H

q

f
HfPB

j

jk

k
!=

"

"

"

"
!

"

"

"

"
#  

 
is called the Poisson Bracket of f  and H  [5, p. 86]. Quantizing (2.47) by the rules of 
Sections 2.2/…/7, on the assumption that f  does not depend explicitly on t ,  
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(2.48a) ! " { } { }jjk

k HFHFHF
,

::

,
,,, #$  

 
where H  is now the QM Hamiltonian operator and  
 
(2.48b) ! "HFHfPBFf ,),(; ## ;  definition 
 
On the further assumption that )()( QFqf !  is pure in the Qq!  
 
(2.49a) ! " { }kk

j HFHFOF :

,

:
,, =#= ;  see (2.48a) 

 
Thus, if (2.26) is satisfied for f!"  then, 
 
(2.49b) ! " # $FHHF ,, =  
 
That is the operator ! "HF , , corresponding to the classical Poisson bracket ),( HfPB , is 
equal to the QM commutator ! "FH , . 
  
 More generally, if ),,( tqpx  and ),,( tqpy  are any two classical dynamical 
variables then, the quantity 
 

(2.50) 
j

jk

k q

y

p

x

p

y

q

x
yxPB

!

!

!

!
"

!

!

!

!
#),(  

 
is called the Poisson Bracket (PB) of  x  and y  [5, p. 86]. Dirac [1, p. 85] asserts that if 
 
(2.51) ! "YXyxPBYyXx ,),(;; ### ;  definition 
 
then 
 
(2.52) ! " # $XYYX ,, = ;  see (2.49) 
 
as a general proposition. Now if 
 
(2.53a) k

j qypx !! ;  
 
then  
 
(2.53b) jkyxPB !"=),(  
 
So, according to (2.52), 
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(2.54) ! " # $ IQPQP jk

k

j

k

j %&=&= ,, ;  see (2.13) 
 
which is the correct quantization of (2.53b) according to (2.13). Similarly we obtain the 
rest of the rules (2.13) by applying (2.52). 
 
 With 3=

c
n  we can define the familiar components of classical angular 

momentum 
 
(2.55a) 

1

2

2

1

33

1

1

3

22

3

3

2

1
;; pqpqlpqpqlpqpql !"!"!" ;  see [5, p. 89] 

 
with quantizations, according to the rules of Sections 2.2/…/7, 
 
(2.55b) 

1

2

2

1

33

1

1

3

22

3

3

2

1
;; PQPQLPQPQLPQPQL !"!"!"  

 
We find 
 
(2.56) symboln permutatio usual  theis ;),( ijk

k

kijkji lllPB !!=" ;  see (2.50) 

 
So, according to (2.52), the quantization of (2.56) should be 
 
(2.57) ! " # $ji

k

kijkji LLLLL ,, %=&='  

 
The last of the equations (2.56) is satisfied by (2.55b) using the rules of Sections 
2.2/…/7. All the usual results, for the quantization of angular momentum, follow from 
either method. For example 
 
(2.58) ! " ## $=%=

i

i

kj

kjijki LLOLLLL 22

,

2
;2,  

 
 Clearly (2.50/52) tell us about the quantization of derivatives. Setting 
 

(2.59) 
jj
q

qx
yxPBpyqxx

!

!
="##

)(
),();(  

 
So, according to (2.52), the quantisation of the derivative of x  pure in the q  is 
 

(2.60) ! " jjj
XXP

q

qx
,,

)(
#$

%

%
 

 
Similarly, setting 
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(2.61) 
k

k

p

py
yxPBpyyqx

!

!
="##

)(
),()(; , 

 
So, according to (2.52), the quantisation of the derivative of y  pure in the p  is 
 

(2.62) ! " kk

k

YQY
p

py
:,

)(
#$

%

%
 

 
The results (2.60/62) are exactly the rules (2.3/23). 
 
 Despite the above agreements between the two methods they are disparate. We 
see this clearly in the first example given at (2.49b). The result is true only if quantization 
1 is satisfied with f!" . Now there are other, independent and compelling reasons why 
quantization 1 should be satisfied for arbitrary ! ; see Section 3.1 below. Nevertheless, 
without this condition, the method which replaces PBs by commutators gives results 
which differ from (2.49a). The reason is that this method does not give explicit rules for 
sums, powers and products; see Section 2.3. In the deduction of rule (2.52) both [1] and 
[5] follow the same argument: The properties of PBs are taken to be summarised by 
 

(2.63) 
).(0).(;),(

);,(),(),();,(),(),(

;0),();,(),(

jijiijji qqPBppPBpqPB

yxzPBzxyPByzxPBzxPByxPBzyxPB

xxPBxyPByxPB

==!=

+=+=+

="=

 

 
It is then assumed that the Hermitian operators that appear in the definitions 
 
(2.64) ! "YXyxPBZzYyXx ,),(;;; #### ;  definition 
 
satisfy rules that look similar to the formulae (2.63). In particular 
 
(2.65)  ! " ! " ! " ! " ! " ! "YZXZYXZXYZYXZXYYZX ,,,;,,, +=+=  
 
where care has to be taken to preserve order because of non-commutativity. It is then 
deduced that, for any four Hermitian operators ZYXW ,,, , 
 
(2.66) ! " ! " ],[,,],[ ZXYWZXWY =  
 
Because the four operators are arbitrary (2.66) is an identity only if, for any two 
operators, BA,  
 
(2.67) ! "BABA ,],[ #=  
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where !  is a scalar constant (which commutes with all operators). In order that (2.54) 
should be satisfied with 
 
(2.68) k

j QBPA !! ;  
 
we must put 
 
(2.69) hi=!  
 
 It is remarkable that (2.65) leads to (2.67) and thence to (2.52); it is also 
remarkable that (2.52) gives so many agreements with the Schrodinger method of 
Sections 2.2/…/7. But the step from (2.63) to (2.65) is ‘sleight of hand’ almost without 
rational basis. In both [1] and [5] this sleight of hand is covered up by a disreputable use 
of notation. We conclude that the PB method of quantization is not a viable alternative to 
the Schrodinger method. 
 
2.11 Feynman’s Path Integral Method 
 
 The Feynman path integral method of quantisation must receive brief mention. 
The method has been an important instrument in the creation of the Standard Model [23]. 
The Feynman method of quantization expresses the state, at a given time, by means of a 
path integral (sum of histories) from a previous time [24]. The kernal of this integral 
involves the exponent of a scalar Lagrangian that describes the system. The difficulty of 
applying the Feynman method to CT is the difficulty of generating operator constraints, 
or something like them, from the path integral; if this could be done the structure of the 
Lagrangian would, presumably, be linked to the constraints. No such argument has been 
found. 
 
 
3. Constraints And Constraint Theory- Preliminaries 
 

The quantizations, unlike the differential identities for ,...,!! &&&  etc., are not, in 
general, identities. They restrict the forms permitted for !  and the operator H ; they are 
constraints. The constraints force patterns/ regularities on P and on the behaviour of the 
particles within it. A Constraint Theory (CT) is thus defined. The object of the theory is 
to study the patterns produced by the constraints and to see if those patterns describe 
recognizable physics. If they do so describe there is then a further topic of investigation 
defined by the question: Are there implied extensions, to conventional physics, which 
lead to testable results? 

 
We are gambling! If the rules of quantization are in error then the results of the 

theory may be nonsense; and, in any case, there may be alternative rules. But, if the rules 
of quantization are correct then, the regularities expressed by the constraints are thought 
to explain CM in terms of QM [21]. 
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3.1 The Significance Of The Hierarchy Of Constraints 
 
 The infinite hierarchy of differential identities exemplified by (1.1/.../4) is an 
expression of a classical ideal: namely, that all the variables are continuous and all the 
functions of those variables are continuous and of class !

C ; in consequence the space P 
is continuous. A system that conforms to this ideal is smoothly deterministic. If any of 
the differential identities fail then one or more of the variables, the functions or their 
derivatives must be discontinuous; such failure could also be caused by a discontinuity in 
P. 
 

The quantizations are each the direct consequence of the above substitution rules 
applied to a differential identity. Conversely if we reverse a quantization, by reversing 
each of the applicable rules, then we obtain the corresponding differential identity. It 
follows that if one or more of the quantizations does not hold, through injudicious choice 
of H  and !"# , then the corresponding differential identities do not hold and the 
classical ideal is compromised. In short: the infinite hierarchy of constraints is a QM 
expression that the underlying classical model is ideal. The following argument shows 
that the satisfaction of the constraints has to do also with predictability. 

 
Because the q  are functions of the time t  the scalar function )(q!  can, in 

principle, be expanded as a function of t . The resulting series can be quantized in terms 
of operators in the Schrödinger representation 
 
(3.1) )0(....;2/)(....2/)( 0

22

000 !"!+#+#+#=#$+!+!+!=! tttttt &&&&&&  
 
As we have seen the Schrödinger operators ,....,!! &&&  are generated according to the rule 
 

(3.2) ,...2,1;;,
01

0

=!"!#$

#
%&

%
!"!'

( )

=

sH
dt

d ss

t

s

s

;  see (2.17) 

 
and so (3.1) becomes 
 
(3.3) )/exp()/exp()()( hh iHtiHttt !"="#$  
 
which is the Heisenberg representation of ! ; see (2.18). Writing the constraints in the 
form 
 

(3.4) ,...2,1; =!= sZ

s

s
;  see (2.26…29) 

 
the formula (3.1) can be expressed as 
 

(3.5) !
"

=

+#=#
1 !

)(
j

j

j

j

tZ
t  
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Thus the constraints are expressed by equating the coefficients of powers of t  across 
(3.1/5). 
 

Now suppose that all the constraints are satisfied up to a finite level n ; that is 
equation (3.4) is satisfied only for ns ! . Then )(t!  is approximated by 
 

(3.6a) !
=

+"#"
n

j

j

j

j

tZ
t

1 !
)(  

 
Unless the series (3.1) terminates this approximation will be valid only for sufficiently 
small t . Clearly, in general, the higher the level n , to which all constraints are satisfied, 
the better the approximation for a given t . Put another way: the higher n  the better the 
RHS of (3.6) is as a predictor of )(t!  and its expectation 
 

(3.6b) !
=

+"#"="
n

j

j

j

j

tZ
ttt

1 !
)(  

 

Similarly, if the quantities ,....2,1,0 =! s

s

 are known then the first equation (3.1) can be 
used to make a classical prediction of )(t! . When n  is finite, however, levels 

,....2,1 ++ nn  of the differential identities may not hold. It follows that only the formula 
 

(3.6c) !
=

"
+"#"

n

j

j
j

j

t
t

1

0

0
!

)( , 

 
with no extra terms, can be relied upon. 
 

Thus, if n  is finite, additional uncertainties are added to the usual QM 
uncertainties. Because h  is small this situation may be summarised by the dictum: 
“satisfaction of higher level constraints forces the behaviour towards a classical ideal” 
(Kauffman). 

 
No prediction, of any kind, is possible unless 1=n ; and the above argument 

suggests that 1>n  is always desirable. 
 
3.2 Constraint 1 Requires A Polynomial Form For H  With Order At Most 2 
 
 The first of the constraints is 
 
(3.7) { } ! "#=# ,,

,

:
HH j

j ;  see (2.26) 
 
Written in full this is 
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(3.8) ( ) )()()(
2

,, HH
i

HQHQHQHQ
i kk

jj

kk
!"!="!+!"

hh
 

 
We now consider what happens to H  when )(q!  is arbitrary. Suppose that 1=

c
n  

and that H  is pure in the single momentum P . Then in the Schrödinger momentum (P-
diagonal) representation 
 

(3.9) I
dp

dH
QHHQ

i

p
iQIpHHpIP =!
"

"
#=$# )(;;)(

h
h   

 
so H  is a scalar function of scalar p . It follows that (3.7/8) simplifies to a first order DE 
with operator coefficients 
 

(3.10) 
O

dp

dH
pp

dp

dH

dp

dH
pHp

dp

dH
H

HH
i

dp

dH
pp

i
pp

i

dp

dH

=!+!"##
$

%
&&
'

(
"!+!##

$

%
&&
'

(
"")

!"!=##
$

%
&&
'

(
!"!+!"!

2

1

2

1

2

1

2

1

)()()(
2

1

hhh
 

 
Now suppose that 
 

(3.11) 
dp

dH
pp

dp

dH
!=!  

 
so only the first two terms remain on the LHS of (3.10). Then, given that !  is arbitrary, 
we may equate the pre and post coefficients of ! , in (3.10), to any operator V  that 
commutes with ! . The simplest way to specify V  is to assume that, like ! , it is pure in 
Q . Thus  
 

(3.12) OdpdVQVp
m

HQV
dp

dH
pH =+=!=" /);(

2

1
)(

2

1 2  

 
where m  is a constant scalar. We see that (3.11) holds, both sides being equal to pmp! . 
Because H  is no longer pure in P  we need to replace dpdH /  by pH !! /  when writing 
(3.10). 
 

Notice that, independently of the above argument, the substitution 
 
(3.13) constant ; aapH =  
 
also satisfies (3.10). Because (3.7) is linear in H  we may add the solutions (3.12/13) to 
give 
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(3.14a) )(
2

1 2
QVapp

m
H ++=  

 
which, in symbols independent of representation, is expressed as 
 

(3.14b) )(
2

1 2
QVaPP

m
H ++=  

 
Thus, we conclude, that if !  is arbitrary then constraint 1 requires that H  is a 
polynomial in P  of order at most 2. 
 
 The solutions of (3.7) can be further generalized on account of its linearity. 
Because the P  mutually commute we may add solutions of the type (3.14) for each 
component of momentum 
 

(3.15) )(
2

1

1

2
QVPaP

m
H

cn

j

jjj

j

!
=

+
"
"

#

$

%
%

&

'
+= ;  the 

jj
am ,  and k  are scalars 

 
where V  can be pure in all the operators Q . When ja

j
!= 0  (3.15) is recognizable as 

the form of the Newtonian energy of the system of particles in P; (with the proviso that 
the 

j
m  associated with a given particle are equal). 

 
 The process of generalization may be taken further. It can be shown, by 
substitution, that the Hamiltonian 
 
(3.16) 

k

k

l
PbAAPH != ; , 

 
where the Hermitian operator A  is linear in the P  with coefficients that are c-numbers, 
satisfies (3.7) when !  is arbitrary. But this is true for all l . We conclude, by linear 
superposition of expressions (3.15/16) multiplied by coefficients that commute with ! , 
that the most general polynomial form allowed is 
 
(3.17) { } { } c

vuuv

j

j

vu

uv
njvuCCUPEPPCH ,...2,1,,;;,,, ==++! K ;  see (2.35a) 

 
The operators UEC

juv
,, , by hypothesis, do not depend on the P . They should be 

observables and so have real spectra. The algebraic symmetry of the RHS of (3.17) then 
ensures that the spectrum of H  is also real. They must also commute with the Q  
because, if they do not so commute, they must depend on the P  [2]; this is contrary to 
hypothesis. The condition vuuv

CC =  does not compromise generality. 
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If the coefficients mutually commute, as well as commuting with the Q  then, they 
can be represented either by real constants or by Hermitian operator functions of the 
coordinate operators Q . They may also be represented by diagonal matrices of such 
elements. If they do not mutually commute then they must be represented by Hermitian 
matrices of such elements (as in the Dirac equation [1]). In what follows we assume that 
the coefficients UEC

juv
,,  are mutually commuting functions of the coordinates Q . 

 
This simplification can be justified by the following argument. If our aim is to 

deduce the rules of CM from axioms of QM then the velocity operators, like the 
coordinate operators, must have a classical character; that is, they must have continuous 
spectra. Given (3.17) the velocity operator of the th

k  coordinate is 
 
(3.17a) ! " { } ;,2,

k

u

ukkk EPCQHQ +=#& see (3.17) and (2.17)  
 
It follows that, if any of the uk

C or the k
E  are non-scalar matrices then, the spectrum of 

kQ&  is not continuous; thus, to reach our declared aim, the juv
EC ,  must be scalars. 

 
There is a complication. If the Heisenberg representation of velocity fluctuates 

very fast, e.g., if the mass involved is high, then the measurement of velocity produces an 
average. It can be shown [22] that, if the velocity operator is represented by a matrix and 
the system is non-degenerate then, the measurement, i.e., the average, is representated by 
a diagonal matrix. But the diagonal still consists of discrete eigenvalues unless the matrix 
is scalar. 
 

A  further simplification of (3.17) is possible. Terms like 
v

uv

u
PCP  can be put into 

the form either +
uv

vu
CPP  terms linear in the P  or +

vu

uv
PPC  ( terms linear in the +)P . 

The linear terms can then be subsumed into the terms { } UPE j

j +,  at (3.17) to give 
 
(3.18) { } { } c

vuuv

j

j

vu

uv
njvuGGVPFPPGH ,...2,1,,;;,, ==++! K ;  see (2.35c) 

 
as the most general form allowed by constraint 1 when !  is arbitrary. The scalar constant 
K  can be chosen to have the physical dimension of (mass) 1! . Thus, if H  has the 
dimension of energy then , the uv

G  have no dimensions. The j
F  have the dimension of 

velocity and V  has the dimension of energy. 
 

We now prove, for completeness, that (3.18) satisfies (2.26). Given that 
 
(3.18a) AAQAQ

uu
;=  pure in the Q  

 
we find 
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(3.18b) 

! " ! "

! "

{ }vv

v

vuv

vuvuvuvu

uv

jjkjkjkj

AH

AFGPAAPPAAPGAH

APAPAAPAPP

,

:

,,,,,

,,,,

,

])()([
2

,

,;,

=

++++=#

$+=

K ;  see (3.18) 

 
By setting !"A  in (3.18b) we have (2.26).  
 
 At Section 2.9 we show that, given the Hamiltonian operators (2.35a/c), possible 
ambiguities of the quantization (2.26) are illusory. But we have also shown at (3.18) that 
the form (2.35c) is the most general allowed by constraint 1. Another general result stems 
from (3.18). Suppose that A  is any polynomial of the form (3.18); also suppose that B  is 
pure in the Q . Then 
 
(3.18c) ! " { }jj

BABA
,

:
,, =  

 
Notice that A  can be any derivation of H  (with respect to the P  and/ or the Q ) or any 
symmetric linear superposition of same with coefficients that are pure in the Q . 
 
 The reverse quantization of (3.18) is the classical Hamiltonian 
 
(3.19a) )()()( qvpqfppqgH j

j

vu

uv
++! K ;  see (2.35b) 

 
where the same scalar functions vfg juv

,,  appear as coefficients in the Q-diagonal 
representation of the operator (3.18). That is, in the Q-diagonal representation, 
 

(3.19b) 
IqvVIqfFggIqgG

IqQ
q

iP

jjvuuvuvuv

jj

jj

)(;)(;;)(

;;

!!=!

!
"

"
#! h

 

 
Most classical Hamiltonians are quadratic in the momenta; the quadratic form is an 
expression of Newton’s laws in classical analytical mechanics. This is a further 
justification of the name ‘momenta’ for the conjugates P  of the coordinate operators Q . 
It follows that the result (3.18) is of high importance, being the first success of CT. 
 
3.3 Hamilton’s Equations In Operators Are Valid In QM 
 

By inspection of (2.17/21/22) we see that 
 
(3.20a) kk

jj HQHP :

,
; =!= &&  

 
These equations are the quantum analogue of the classical Hamilton's equations 
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(3.20b) 
k

k

jj
p

H
q

q

H
p

!

!
=

!

!
"= && ;  

 
Indeed (3.20b) can be regarded as the reverse quantization of (3.20a). But keep in mind 
that the axioms of quantization require that P is flat and the coordinates are Cartesian; so 
the QM Hamilton's equations (3.20a) are restricted to flat coordinates. Their classical 
counterparts ),( qp  at (3.20b) are allowed to be curvilinear. 
 
3.4. Constraints 1 And 2 Combined- The Theta Equation 
 
 The work of Section 3.1 suggests that H and !  should satisfy, consecutively, as 
many constraints as possible. It follows that it is desirable that H and !  should satisfy, at 
the least, constraint 2 as well as constraint 1; we expect !  to be restricted thereby. 
Constraint 2 is 
 
(2.27) ! "{ } { } ! "#=#+#$ ,,,,,,

,,

::

,

:

2
HHHHHHZ kj

kj

j

j  
 
By combining this with (2.26/3.7) we can remove all explicit reference to the j

H
:  and to 

H . We obtain thereby an operator equation involving only the derivations of ! . In the 
Q-diagonal Schrodinger representation this reduces to a fourth order PDE satisfied by ! . 
The PDE contains no reference to either the uf  or v . It allows us, in principle, to 
calculate functions )(q!  that satisfy both constraints 1 and 2 given the functions uv

g ; see 
(3.18/19b). 
 

Commute (2.26/3.7) with H  to produce 
 
(3.21) ! " ! "#= ,,,

1
HHZH  

 
Subtract (3.21) from (2.27) to get 
 

(3.22a) 

! " { } ! "{ } { }! "
{ } { }! " ! "{ } ! "{ }
{ }{ }kjkj

j

j

j

j

j

j

kj

kj

j

j

j

j

kj

kj

HH

HHHHHHHH

HHHHHHZHZ

,,

::

,

:

,

:

,

:

,,

::

,

:

,

:

,,

::

12

,,

,,,,,,,,

,,,,,,,

#=

#=#$#=#%

#=#+#%=

;  see (3.18c) 

 
Written in full the equation of the first and last terms is 
 

(3.22b) 
{ } { }{ }

jkkj

k

kj

jkj

kjkj

kj

kj

kj

kj

kj

OHHHHHH

HHHH

,,,,

:

,,

:::

,,,,

::

,,

::

,,

::

;)2(
12

1

,,,,

!=!=!"!+!#

!=!

;  see (2.23) 
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or 
 

(3.22c) [ ][ ] jkkjkj

kj OHH
,,,,,,

::
;,,

12

1
!=!=!  

 
Because 
 
(3.23) ! " AQAQAGAH uu

u

ull
== ;2,

,

:
K ;  see (3.18)  

 
the result (3.22c) is identical to 
 

(3.24) [ ] OGH
i

ukj

ukj =!
,,,

:
,

6

Kh  

 
giving, upon further application of (3.23), 
 

(3.25) cvukj

ukvj nvukjOGG ,...2,1,,,;)(
3

,,,,

22

==!"
Kh ;  Operator Theta Equation  

 
The numerical factor 3/

22
Kh!  can, of course, be cancelled; we retain this factor at 

(3.25) because the operator on the LHS is the imbalance across (5.22a/b). In the Q-
diagonal Schrödinger representation 
 
(3.26a) IqggIqgG

vuuvuvuv )(;;)( !="=#  
 
and (3.25) reduces to the PDE 
 
(3.26b) cvjku

ukvj nvukjgg ,...2,1,,,;0)( ,, ==! ;  Scalar Theta Equation 
 
Notice that the theta equation does not contain the functions jf  and v . Further the theta 
equation is not a classical approximation; it is a purely QM result. It can be derived by 
substituting the quadratic operator H , which derives from the first quantization, namely 
constraint 1, into the second quantization, namely, constraint 2. 
 

That !  satisfies the PDE (3.26b) raises an immediate issue: Quadratic operator 
H  derives from constraint 1 on the assumption that !  is arbitrary; but it cannot be truly 
arbitrary if it satisfies (3.26b). At most it is the general solution of (3.26b) given a 
particular 

c
n -space C. So is the quadratic form of the operator H  valid? Yes! Solutions 

of (3.26b) must be subject to complicated boundary conditions; thus !  is sufficiently 
arbitrary for the quadratic solution of constraint 1 to follow. 

 
The scalar theta equation (3.26b) can be regarded as a field equation for theta 

(subject to possible modification by higher constraints at levels 3 and above). Because the 
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lmg  the lf  and v  inform the Hamiltonian they are all candidates for ! . We thus have 
three versions of (3.26b) that are putative field equations for the lmg  the lf  and v : 
 
(3.27a/b/c) 0)(;0)(;0)( ,,,,,, === vjku

ukvj

vjku
lukvj

vjku
lmukvj vggfggggg  

 
Recall that, according to the quantization axioms, these equations are true only in a flat 
space using flat (Cartesian) coordinates. 
 
3.5 An Alternative Way To Calculate 

2
Z  Leads To Questions About Consistency 

 
Condition (3.22a/b) ensures that constraints 1 and 2 shall be consistent. But, when 

constraint 1 holds, there is an alternative way to calculate 
2
Z ; this, ostensibly, leads to a 

second consistency condition. Suppose that a scalar f  is a function of the p  and the q  
 
(3.28) )();();,( tqqtppqpff !!!  
 
then 
 

(3.29) 
k

kj

j

k

kj

j p

H

q

f

q

H

p

f
q

q

f
p

p

f
f

!

!

!

!
+

!

!

!

!
"=

!

!
+

!

!
= &&&  

 
Quantizing according to the rules of Section 2 
 
(3.30) ! " { } { } FfHFHFFH k

kj

j #+$= ;,,,
:

,,

:  
 
Now define 
 
(3.31) 

1
ZF !  

 
This definition is consistent with (3.28), that a scalar 

1
zf !  is a function of the p  and 

the q , because 
 

(3.32) { } 1,

: ,
)(),(

ZH
q

q

p

qpH
l

l

l

l

=!"
#

$#

#

#
;  see (2.26) 

 
Therefore 
 

(3.33) 
! " { } { }
{ }{ } { }{ }jj

l

lk

kj

j

k

kj

j

HHHH

HZHZZHZ

,

:

,

::

,,

:

:

,1,

:

112

,,,,

,,,

#$#=

+$==
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So the second consistency condition equates two expressions for 
2
Z  (see (2.27)) 

 
(3.34a) ! "{ } { } { }{ } { }{ }jj

l

lk

kj

j

kj

kj

j

j HHHHHHHH
,

:

,

::

,,

:

,,

::

,

:
,,,,,,,, #$#=#+#  

 
or 
 
(3.34b) ! " { }! " { }{ } { }{ }jj

l

lk

kj

j

j

j HHHHHHHH
,

:

,

::

,,

:

,

:
,,,,,,,, #$#=#=# ;  see (2.26/27) 

 
Written in full this is 
 

(3.34c) 

( ) ( )[ ]

( ) ( )[ ]

( ) ( )

( ) ( ) !
!

"

#

$
$

%

&

'+'('+'(

'+'+'+'
=

'+'('+'=

'('('('(

j

jl

ll

ljl

ll

l

j

k

k

j

jj

j

k

j

jj

jk

j

jj

jj

jj

j

HHHHHH

HHHHHH

HHHHHH
i

HHHHHH

,

::

,,

:::

,,

:

,

:

,

:

,,

:

,

:

,,

::

:

,,

::

,,

:

2

2

1

1

h

h

;  given constraint 1 

 
 We now treat condition (3.34) cautiously by substituting special cases! Try the 
linear Hamiltonian form 
 

(3.35) 
{ }

{ } kku

u

k

ljjj

u

uuv

VPFHOHFH

QVPQFHG

,,,

::: ,;;

);(),(0

+===!

+"!"
 

 
Then the LHS of (3.34b) is 
 
(3.36a) { }! " ! " uj

ju

j

j

j

j
FFFHHH ,,,,

: )(,,, #=#=#  
 
and the RHS of (3.34b) is 
 
(3.36b) { }{ } { }{ } ( ){ } kj

jkk

kj

j

j

j

l

lk

kj

j FFFFHHHH ,,,,,

:

,

::

,,

: )(,,,,, !=!=!"!  

 
This result shows that (3.34) is an identity given at least one Hamiltonian form that 
satisfies constraint 1 for arbitrary ! . 
 

Now try the quadratic form in which the coefficients VFG
uuv
,,  are constant 

scalars. The operator H  and its derivations mutually commute and, in addition, we note 
that 
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(3.37) 
! " { }

vuuvjlljj

kk

j

u

ujj

j

j

GGGHOHOH

FPGHAHQAH

====

+==

;2;;

;2;,)(,

:::

,,

:

,

:

K

K
 

 
It follows that the LHS of (3.34b) is 
 
(3.38a) { }! " ! "{ } { }{ }kjkj

j

j

j

j HHHHHH
,,

::

,

:

,

:
,,,,,, #=#=#  

 
and the RHS of (3.34b) is 
 
(3.38b) { }{ } { }{ } { }{ }kkj

j

j

j

l

lk

kj

j HHHHHH :

,,

:

,

:

,

::

,,

:
,,,,,, !=!"!  

 
So again, because j  and k  are dummy and jkkj ,,,,

!=! , (3.34) is an identity. 
 
 These special cases tempt one to suppose that (3.34) is an identity given only that 
constraints 1 and 2 hold. If that is so then the second condition adds nothing. It is, 
however, not necessarily so. The second consistency condition might require, for 
example, that the lmg  the lf  and v  are, a fortiori, the candidates for ! . This would be 
the case if it could be proved, for example, that 
 
(3.39) { } { } OVGBGPFGGAPPGGG vukj

ukvj

lv

l

ukj

ukvj

mlv

lm

ukj

ukvj =++ ,,,,,,,,,,,, )()(,)(  
 
where A  and B  are non-null and either scalar or pure in the Q . This relation is then 
possible only if 
 
(3.40) 0)(;0)(;0)( ,,,,,, === vjku

ukvj

vjku
lukvj

vjku
lmukvj VGGFGGGGG  

 
which, in the Q-diagonal representation, reduces to (3.27a/b/c). Unfortunately, the 
algebra is too sticky for me! 
 
3.6 Some Free Particle Hamiltonians That Satisfy All Or Many Of The Constraints 
 
 We now consider some Hamiltonians of particles that are ‘free’ in the sense that 
their acceleration operators are null. For example 
 
(3.41) 1;

1
=!

c
nCPH  

 
where C  is an Hermitian matrix of constant c-numbers and the single momentum is 
conjugate to the single coordinate 

1
Q . We find 

 

(3.42a) OQOQCHQ
n

=!===
11

1:

1
; &&&  for ,....2,1;1 => nn  
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(3.42b) 1,....,1,11,1,

2

11,1 )()(;)( !=!"!=!!=!
n

n

CQCQCQ &&&  
 
From now on, when dealing with the case 1==

cp
nn , use the shorthand 

 
(3.42c) 

1....11,....,1,11
;; !"!"" QQPP  

 
By virtue of (3.42a) only a single term in 

n
Z  survives 

 
(3.43) { } ,...2,1;,,....,,

1....111....11
=!=!= nCCCCZ

n

n
;  see (3.42a) 

 
It follows that, because !  satisfies (3.42b), 
 

(3.43a) 
n

n
Z !=  

 
and the Hamiltonian (3.41) satisfies all the constraints for all ! . 
 
 This argument may be extended to the Hamiltonian 
 
(3.44) j

j
PCH !  

 
where the C  mutually commute, commute with the P  and the Q , are constant and 
Hermitian. We find 
 

(3.45a) OQOQCHQ
n
kkkkk
=!=== &&& ;

:  for ,....2,1;1 => nn  
 

(3.45b) 
n

n

jjj

jjj
n

kj

kj

j

j CCCCCC
,....,,,,,, 21

21 ....; !=!"!=!!=! &&&  
 
By virtue of (3.45a) only a single term in 

n
Z  survives 

 
(3.46) { } ,...2,1;....,,....,,

,....,,,,....,,, 21

21

21

21 =!=!= nCCCCCCZ
n

n

n

n

jjj

jjj

jjj

jjj

n  
 
It follows that, because !  satisfies (3.45b),  (3.43a) holds and all the constraints are 
satisfied by the Hamiltonian (3.44) for all ! . 
 
 Consider the Hamiltonian 
 

(3.47) 1;
2

2

=!
c
n

P
H  

 



 33 

This represents the Newtonian kinetic energy of a single free particle, of unit mass, 
moving in a 1-space. We find (with the convention (3.42c)) 
 

(3.48) OQOQPHQ
n

=!=== &&& ;
1:  for ,....2,1;1 => nn  

 
The th

n  constraint is therefore 
 

(3.49) { }
n

n

ZPPP
PPP

=!="
#

"
$
%

$
!=!

1....1

222

,,....,,
2

,....,
2
,

2
 

 
Constraint 1 is an identity 
 

(3.50) { } )(,);(,
2

112

1

1112

1
2

PPPPP
P

!+!=!!+!="
#

"
$
%

$
!  

 
as we should expect (because H  is quadratic). Constraint 2 is 
 

(3.51a) { }
11

22

,,,
2
,

2
!="

#

"
$
%

$
! PP

PP  

 
which reduces to 
 
(3.51b) 06/12/)( 1111,111111

2

1111

2
=!"=#"=#+#+#$ OOPPPP  

 
The only function of the coordinates that characterises the simple system, represented by 
(3.47), is q=! ; this choice certainly satisfies (3.51b). No function of the coordinate 
operators appears in the Hamiltonian. 
 

We now show that all higher constraints are satisfied if (3.51b) holds. Constraint 
3 is 
 

(3.52a) { }
111

222

,,,,
2
,

2
,

2
!="

#

"
$
%

$
! PPP

PPP  

 
which reduces to 
 
(3.52b) OPPPPPP =!+!+!"!"

111

22

111

3

111111

3  
 
Commute (3.51b) with P  and then post multiply by P12  to get 
 
(3.53a) OPPPPP =!+!"!"

111

22

111111

3
2  
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Commute (3.51b) with P  and then pre multiply by P12  to get 
 
(3.53b) OPPPPP =!+!"!"

2

111

3

111111

2
2  

 
Add (3.53a/b) to get (9.52b). Thus, if constraint 2 holds (see (3.51)) then, so does 
constraint 3. Now if (3.51) holds 
 
(3.54) OOO =!=!=!

1....111111111111
;;  

 
by successive commutations of (3.51b) with P . Constraint 4 is 
 

(3.55) { }
1111

2222

,,,,,
2
,

2
,

2
,

2
!="

#

"
$
%

$
! PPPP

PPPP  

 
The RHS of this equation is linear in 

1111
!  (with pre and post coefficients which are 

multiples of powers of P ) and therefore vanishes. But the LHS is also linear in 
1111

! ; for 

example !
"

!
#
$

#
%,

2
,

2

22
PP is linear in 

11
!  and !

"

!
#
$

#
%,

2
,

2
,

2

222
PPP  is linear in 

111
! . So the LHS 

also vanishes and constraint 4 is satisfied. By a similar argument, according to (3.54), all 
the higher constraints are satisfied. Thus, if !  satisfies (3.51b) then the Hamiltonian 
(3.47) satisfies all the constraints. 
 
 Consider the Hamiltonian 
 

(3.56) 1;;
2

1

±!"#"!"=! $
=

jjjkjj

jk

j

n

j

jjkj

jk gPPPgH
c

KK  

 
This archetype is of some importance to physics; it belongs to the family (3.18). We find  
 

(3.57a) OQOQPHQ
n
kkk

kk

kk
==!"== ;2

: &&&  for ,....3,2;1 => nn  
 
where the expression for kQ&  is not summed over k  and, for simplicity, we set 
 
(3.57b) 1=K  
 
Because the Hamiltonian (3.56) is quadratic constraint 1 is satisfied; likewise constraint 2 
is satisfied providing that the theta equation (3.25/26) holds 
 

(3.57c) 0
1,

,

1,

,,,,,,,,
=!""#=$""=$ %%

==

cc n

kj

jjkkkkjj

n

kj

kkjjkkjjvukj

ukvj Ogg  



 35 

 
Again there is no function of the coordinates contained in the Hamiltonian; and, again, 
we choose the coordinates themselves as plausible candidates for ! . With this choice 
(3.57c) is satisfied. 
 
Constraint 3 is satisfied if (see (2.28) 
 

(3.58a) { }!!!!
====

"###=$
%

$
&
'

&
"###

cccc n

lkj

lkjlllkkkjjjl

n

l

llk

n

k

kkj

n

j

jj PPPPPP
1,,

,,,

2

1

2

1

2

1

,2,2,2,,,  

 
Expanding, keeping in mind that lkj ,,,

!  is independent of the order of its suffices and that 
those suffices are dummy, the LHS is 
 

(3.58b) 
( )

)
~

3
~

3
~~

(

])
~~

()
~~

([])
~~

()
~~

([

,,

,,

lkjlkjlkjlkj

lkj

llkkjj

lkj

jkllllkkllllkjllkkjj

PPPPPPPPPPPP

PPPPPPPPPPPPPP

!+!+!+!"""=

!+!+!+!+!+!+!+!"""

#

#
 

 
and the RHS is 
 
(3.58c) { } )

~~~~
(2

~
,,,8

,,,,

lkjlkjlkjlkj

lkj

llkkjjlkj

lkj

llkkjj PPPPPPPPPPPPPPP !+!+!+!"""=!""" ##  

 
where 
 

(3.58d) lkj ,,,

~
!"!  

Collecting terms (3.58a) becomes 

(3.59) ( ) OPPPPPPPPPPPP
lkj

lkjlkjlkjlkjllkkjj =!+!+!"!"###$
,,

~~~~  

 Now we deduce, above, that 

 

(3.22b) OHHHHHH k

kj

jkj

kjkj

kj
=!"!+! )2(

12

1 :

,,

:::

,,,,

::  

 

which is the general condition that (3.18) shall satisfy constraint 2 given that !  is 
arbitrary. Substituting the special case (3.56/57) we have 
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(3.60) ( ) OPPPPPP
kj

kkjjkjkjkjkjkkjj =!"!+!##$
,

,,,,,,
2  

 
as another way of writing (3.57c). Commute (3.60) with 

l
P  and then post multiply by 

lll
P!"  to get 

(3.61a) ( ) OPPPPPPPPP
lkj

kjlkjlkjlllkkjj =!"!+!###"$
,,

~
2

~~  

after summing over l . Commute (3.60) with 
l
P  and then pre multiply by 

lll
P!"  to get 

 
(3.61b) ( ) OPPPPPPPPP

lkj

lkjlkjlkjllkkjj =!"!+!###"$
,,

~
2

~~  

 
after summing over l . Add (3.61a/b) to get (3.59). Thus, if !  satisfies (3.57c) then, the 
Hamiltonian (3.56) satisfies constraints 2 and 3. 
 
 Let us try to push this argument further. Constraint 4 is 
 

(3.62a) 
{ }!

!!!!

=

====

"####=

$
%

$
&
'

&
"####

c

cccc

n

lkj

lkjmmmlllkkkjjj

m

n

m

mml

n

l

llk

n

k

kkj

n

j

jj

PPPP

PPPP

1,,

,,,

2

1

2

1

2

1

2

1

,2,2,2,2

,,,,

 

 
Expanding, the LHS is 
 

(3.62b) 

)
~

4
~

6
~

4

~~
(

])
~

3
~

3
~~

(

)
~

3
~

3
~~

([

,,

,,

lkjmlkjmlkjm

mlkjmlkjmm

lkj

llkkjj

mlkjlkjlkjlkj

lkjlkjlkjlkjmmm

lkj

llkkjj

PPPPPPPPPPPP

PPPPPPPP

PPPPPPPPPPPPP

PPPPPPPPPPPPP

!+!+!+

!+!""""=

!+!+!+!+

!+!+!+!""""

#

#

 

 
and the RHS is 
 

(3.62c) 

{ }

)
~~~~~

(
5

16

~
,,,,16

,,

,,

mlkjmlkjmlkjmlkjmlkjmm

lkj

llkkjj

mlkjmm

lkj

llkkjj

PPPPPPPPPPPPPPPPPPPP

PPPP

!+!+!+!+!""""=

!""""

#

#
 

 
where 
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(3.62d) mlkj ,,,,

~
!"!  

 
Collecting terms (3.62a) is 
 

(3.63) 
OPPPPPPPPPPPP

PPPPPPPP

lkjmlkjmlkjm

mlkjmlkjmm

lkj

llkkjj

=!+!+!+

!"!"####$

)
~

4
~

14
~

4

~
11

~
11(

5

1

,,  

 
Commute (3.61a/b) with 

m
P  and then pre and post multiply the results by 

mmm
P !  to get 

 

(3.64a) ( ) OPPPPPPPPPPPP
mlkj

kjlmkjlmkjlmmmllkkjj =!"!+!####" $
,,,

~
2

~~  

(3.64b) ( ) OPPPPPPPPPPPP
mlkj

mkjlmkjlmkjlmmllkkjj =!"!+!####" $
,,,

~
2

~~  

(3.64c) ( ) OPPPPPPPPPPPP
mlkj

mlkjmlkjmlkjmmllkkjj =!"!+!####" $
,,,

~
2

~~  

(3.64d) ( ) OPPPPPPPPPPPP
mlkj

lkjmlkjmlkjmmmllkkjj =!"!+!####" $
,,,

~
2

~~  

 
after summing over m . Now the four equations (3.64) are derived from (3.60) via (3.61); 
and (3.60) is an expression of the condition that !  must satisfy in order that the   
Hamiltonian (3.56) shall satisfy constraint 2 and, as we have proved, constraint 3. So, if a 
linear combination of the equations (3.64) 
 
(3.65) w (3.64a) x+ (3.64b) y+  (3.64c) z+  (3.64d) 
 
exists that is identical to (3.63) then, constraint 4 is also satisfied. Equation (3.65) is 
identical to (3.63) if there are four numbers zyxw ,,,  that satisfy the five linear equations 
 

(3.66a) 

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

'

=

!
!
!
!
!

"

#

$
$
$
$
$

%

&

!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$

%

&

'

''

4

4

14

11

11

1012

0010

2121

0100

0001

z

y

x

w

 

 
These equations are found to be consistent; they have the joint solution 
 
(3.66b) 22;11;4;11 !=!==!= zyxw  
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It follows that (3.56) satisfies constraints 1 to 4. 
 
 Clearly the method employed here, to prove that the satisfaction of constraints 3 
and 4 follows from that of constraint 2, is cumbersome and cannot be extended easily to 
higher levels. Nevertheless it seems likely that the Hamiltonian (3.56) does indeed satisfy 
all the constraints given (3.57c). 
 

3.7 An Hypothesis About The Error Operators 
n

n

Z!"  
 
 The operator  
 

(3.67) ,...2,1; =!"# sZE
s

s

s
;  see (2.26/…./29) 

 

represents the error made by expressing 
s

!  as 
s
Z . The operator (theta) equation (3.25) is 

the result of the satisfaction of constraints 1 and 2. It can be expressed as 
 
(3.68) OE  OE ==

12
; ;  see (2.26/…./29, 3.2, 5.11) 

 
It is clear that there exist higher level theta equations of the form 
 
(3.69) 2;1,...,1,; >!== nnnkOE

k
 

 
In general we are concerned, in what follows, with the non-null error operators that 
remain when all the error operators below a certain level are null. Thus 
 
(3.70) 1;1,...,1,;;

1
>!=="+ nnnkOEOE

kn
 

 
 Now suppose that the constraints (3.4) are not necessarily satisfied. We see that 
 

(3.71) !!
"

=

"

=

=#$#$%&
11

1
!!

)()(
j

j

j

j

j

j

j

tE

j

tZ
tt ;  see (3.1) 

 

is the total error in )(t!  made by expressing the 
s

!  by the 
s
Z . In particular, if (3.70) 

holds then, 
 

(3.72) 1;
!

)(
1

1 >!" #
$

+=

+ n
j

tE
t

nj

j

j

n
 

 
According to the calculation leading to (3.25),  when OE =

1
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(3.73) cvukj

ukvj nvukjGGE ,...2,1,,,;)(
3

,,,,

22

2 =!"=
Kh  

 
or, in the Q-diagonal Schrodinger representation, 
 

(3.74) IggE vjku

ukvj

,,

22

2 )(
3

!"=
Kh  

 
The hypothesis referred to in the title of this section is that, when it happens that 

 
(3.75a) 1,...,2,1;;2; !!==>" nnkOEnOE

kn
  

 
and H  is quadratic in the P , the error operator has a particularly simple form 
 
(3.75b) 1,...,2,1;;2;)( !!==>"# nnkOEnIE

kn

n

n
Kh  

 
where, in the Q-diagonal Schrodinger representation, the operator 

n
!  is a scalar function 

of the q . This function 
n

!  is presumed to depend in a simple way on the uv
g , their 

coordinate derivatives and the coordinate derivatives of ! . When H  is quadratic in the 
P  the highest derivative expressions in the uv

g  and/ or ! , in 
n

! , are expected to be of 
order n2 ; then 

n
!  has the physical dimensions of n2)coordinate( !

"# . The constant of 
proportionality in (3.75b) is not expected to be big; see (3.74). The hypothesis is clearly 
true when .2=n  
 

The series on the RHS of (3.72) always converges rapidly if 
 

(3.76) ,....4,3;
1

1
=>>

+

+
jE

j

tE
j

j ; assuming that the theta equation holds 

 
where jE  denotes the upper magnitude of the finite bounds of the operator jE . When 

either bound is infinite (3.76) may be true only when jE  denotes the actual magnitude 

(in the Q-diagonal Schrodinger representation) of jE  at any point in some finite region of 
P. Notice that, if the hypothesis (3.75b) is true (in the Q-diagonal Schrodinger 
representation) and 

n
!  has the physical dimensions stated then, j

jtE  has the dimensions 
of ! . Also successive terms in the series (3.76) have the dimensionless ratio 
 

(3.77) ,....4,3;
)1()1(

11
=

!+

!
=

+

++
j

j

t

Ej

tE

j

j

j

j Kh
; assuming that the theta equation holds 
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The series (3.72) certainly converges if the sequence jj
!! + /1  is absolutely convergent. 

Further, if the ratio (3.77) is always very small then, the higher constraints ( 2>n ) are 
unimportant; that is, the RHS of (3.72) approximates its first term and, for most 
circumstances, the first term will be physically small. That is 
 

(3.78) 
!3

)(
3

3
3

tE
t !" ; assuming that the theta equation holds 

 
Given that the hypothesis (3.75b) holds it is, at the least, plausible that, for 

laboratory measures of physical quantities, the ratio (3.77) is always very small. In such 
circumstances the theta equation (3.25) and  quadratic Hamiltonians are sufficient for  
CM. For example suppose 
 

(3.79) 22013134 105.7
)1(

3;103;1000;10 m
j

t
jsectkgmksu !!!

"#
+

$="==#
K

K
h

h  

 
That is K  is chosen to be the reciprocal of a gram mass and t  is chosen to be 
approximately a million years. With these choices, for the ratio (3.77) to be as high as 

5
10

! , we require jj
!! + /1  to be slightly higher than 214

10
!
m . If this is our ‘threshold’ 

then, to make the higher constraints important, !  needs to change appreciably over a 
distance as small as m

714
1010

!!
=  which is a tenth of a micron. Keeping in mind that 

!  is a characteristic of the system large changes, over such a small distance, is probably 
at the limit of usefulness of classical analysis. 
 
 
4. The Coordinate Space C 
 
4.1 Identification Of The Matrix Potentials (Coefficients uv

G ) And The Time t  
 
 The reverse quantization of (3.18) is the classical Hamiltonian 
 
(3.19a) )()()( qvpqfppqgH j

j

vu

uv
++! K ;  see (2.35b) 

 
where the same scalar functions vfg juv

,,  appear as coefficients in the Q-diagonal 
representation of the operator (3.18). Now suppose, for simplicity, that 
 
(4.1) 0;0 =!= vjf j  
 
then (3.19a) reduces to 
 
(4.2) vu

uv
ppqgH )(K!  
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and the Hamilton’s equations (3.20b) give, after eliminating the p , 
 

(4.3) ( )kijijkjik

lkl

ij

lkj

kl

j ggggqqq
,,,

2

1
;0 !+"#=#+ &&&&  

 
The relations (4.3) have the form of the tensor equations for a geodesic, with parameter 
t , in a Riemannian 

c
n -space having metric tensor uv

g . The geodesic distance is 
proportional to the parameter 
 
(4.4) ts !  
 
Further, if (3.20b) is the reverse quantization of (3.20a) then, t , at (4.4), is the quantum 
time (unaffected by the reverse quantization). Note that (4.2/3/4) amount to a classical 
approximation because they are based on (3.19a). 
 
4.2 The Coordinate Space C  And The Representative Point Q 
 
 The functions vuuv

gg =  appear to be elements of a fundamental tensor in a 
Riemannian 

c
n -space. Denote this space by C. The coordinates q  of the particles in P are 

those of a single representative point Q  in C. The classical equations of motion of this 
point derive from Hamilton’s equations operating on (3.19a). The motions of each of the 
particles in P are thus determined by the time variation of the corresponding subset of q  
along the path of Q. We must define the space C to be flat; if it is otherwise there will be 
topological inconsistencies in using the same set of coordinates q  in both P and C. 
 
 If we accept the above interpretation of the vuuv

gg =  then the space C is 
Riemannian metrical and flat. But if P contains only one particle then its coordinates are 
those of Q  and we can say that P!C. So P is Riemannian metrical and flat. This 
conclusion is consistent with the quantization rules; see Section 2.2 et seq. 
 
 Notice that if 
 
(4.5) 0/0 !"#$! vjf j  
 
then the path of Q in C is not a geodesic but, presumably, the other interpretations are 
unaltered. 
 
4.3 The Theta Equation, As It Stands, Is No Use For Explaining Gravity 

 
The equations (3.27a), derived from (3.25) by assigning lmg!" , are, apparently, 

of no use in explaining Einsteinian gravity.  In the first place, (3.25) is not then a tensor 
equation. In the second place, if the fundamental tensor lmg  is to describe Einsteinian 
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gravity then C must be curved. We see this, at once, by considering a single particle in 
Minkowskian P with Galilean coordinates. In this case the properties of C may be made 
identical to those of P if we choose the lmg to be Minkowskian; the four coordinates of Q 
are, necessarily, Galilean. But that is as far as we can go. By definition C is flat. Neither 
the actual particle in P  nor the representative point in C can behave as if subject to 
Einsteinian gravity. 
 
4.4 The Curved ‘Coordinate Space’ C'- Kilmister’s Equation  
   

Consider a curved  Riemannian 
c
n -space C' with general coordinates q! . Suppose 

that C is tangential to C'  at common points O!  in C'  and O  in C. Then the coordinates 
q!  can be chosen to be locally Cartesian geodesic at pole O!  such that 
 

(4.6)  t
dt

dx
xqq ;; !"= &&& proportional to the geodesic distance in C 

 
Thus (3.25) can be said to hold in both spaces in a neighbourhood of OO !" . Also true in 
that neighbourhood are the classical equations of motion of Q. But those equations of 
motion are tensor equations (given the assumptions that the jf  form a vector and v  is an 
invariant) true in all coordinate systems. It follows that we may choose 
 
(4.7) !O Q  with flat coordinates !"Oq;  Q'  with geodesic coordinates q!  
 
and the equations of motion for Q'  will be the same tensor equations expressed with 
respect to the coordinates q! . The difference between C and C' is that in the latter space 
the metric tensor, and therefore the curvature, is unrestricted. 
 
 If the theta equation (3.25) holds only at the pole of geodesic coordinates then it is 
approximated in a neighbourhood of that pole. This idea is consistent with the notion that 
most quantum events, associated with particles, take place in a small region of space. 
 

The question arises: What tensor equation, defined in C', reduces to (3.27a) at the 
pole O!  of locally Cartesian geodesic coordinates when lmg=! ? This question has been 
answered by Kilmister (see below). The tensor equation is  
 
(4.8) 0)(

3

2

; =+ fbaeefab

ef RRRg ;  
ab
R  is the covariant Ricci tensor;  cnfeba ,...2,1,,, =  

 
where j;(.)  denotes covariant differentiation with respect to the thj  coordinate. This 
equation can be interpreted as governing the curvature of C'. It seems to allow us to make 
contact with Einsteinian gravity. If so then it applies only to the space between particles. 
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 The question also arises: What is the status of the Kilmister equation? Is it 
quantum mechanical or is it classical? The theta equation, as we have seen, is quantum 
mechanical. But the Riemannian character of C' depends on the identification of the 
functions lmg  as the metric in a geodesic equation; and that depends on the reverse 
quantization (3.19a). So the Riemannian character of C' is a classical approximation. 
Because it is derived from the theta equation, on the assumption that lmg  is the metric of 
a Riemannian space, we need to regard the Kilmister equation as a classical 
approximation.  
 
 If the Kilmister equation can, in fact, describe gravity then it seems that gravity is 
an emergent property of macrophysical systems. 
 
4.5 A Change Of Notation 
 
 In what follows, for simplicity, we drop the primes appended to C' , O! , Q' and 
q!  except where there may be ambiguity. When C'  happens to be flat C'  and C are 
identical and we may choose qq !"  and Q'!Q. When C'  might be curved we emphasize 
this by using standard notation for the coordinates in C'  and a consonant notation for the 
representative point Q'  
 
(4.9) qx !" ;  X!Q'  
 
Thus, in the new notation: C may be curved and the coordinates x  of the representative 
point X in C cannot then be the aggregate of the coordinates q  of particles in P. But if 
the x  are geodesic at X then we may choose 
 
(4.10) xq && = ;  at X. See (4.9) 
 
 
 
5. Derivation Of The Kilmister Equation 
 
5.1 Note On Geodesic And Local Cartesian Canonical Coordinates 
 

Before considering Kilmister’s answer to the question: “To which tensor 
equations, expressed in Cartesian geodesics at a pole X, are the equations (3.27a) 
equivalent”? it is wise to review certain technical matters! 
 
 It can be shown [6] that if a point A is sufficiently close to a point B then the path 
defined by the geodesic equation, between A and B, is unique; in the 

c
n -space C,  

c
n  

such paths from 
c
n  points B, terminating at the same point A, can be used as coordinate 
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axes within a neighbourhood of their origin A. We shall call such coordinates Geodesic 
with pole A. 
 

Kilmister’s argument uses special geodesic coordinates known as Canonical 
Coordinates [7]; these can also be local Cartesian. It is convenient to gather here certain 
facts about such coordinate systems. Suppose that we express a non-singular 
transformation from coordinates j

x  to coordinates k
x  

 
(5.1) )( baa

xxx =  
 
and, further suppose that the RHS of (5.1) can be expanded as a series about any point P 
 
(5.2) .....+++=

dcba

bcd

cba

bc

ba

b

a
xxxCxxBxAx ; summation convention in force 

 
where the constants a

bc
B  and a

bcd
C  are symmetrical in their lower suffices. Note that the 

a
x  have been chosen so that the two sets of coordinates have a common origin P. Now 
consider a neighbourhood of P in which 
 
(5.3) oxxxxCxxBxAx

adcba

bcd

cba

bc

ba

b

a
!++" ;  

 
Neglecting, for the moment, the second and third order terms the constants a

b
A  can be 

chosen so that the a
x  are orthogonal [6] in a neighbourhood of P; and, therefore, the a

x  
can be regarded as Cartesian locally to P. The constants a

bc
B , being equal in number to 

the uv

w
g
,

, can be chosen so that, in the a
x  system,  

 
(5.4) 0

,
=

uv

w
g  

 
is satisfied at P. This is the primary property of geodesic coordinates [8]. 
 
 Kilmister assumes that the a

x  are already orthogonal (local Cartesian) geodesic 
and he applies a further transformation 
 
(5.5) dcba

bcd

aa
xxxCxx +!  

 
leading to a different set of geodesic coordinates. He then applies a set of conditions on 
the a

bcd
C . Namely, that at P, 

 
(5.6a) 0

,,,
=!+!+!

a

cdb

a

bcd

a

dbc
;  a

dbc,
!  is a Christoffel symbol of the second kind [8] 

 
these being constraints on the second derivatives lmjkg ,

. The coordinates (5.5) are then 
said to be canonical [7]. 
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Is this procedure valid? Because a

bc
!  is symmetrical in the suffices bc  it follows 

from (5.6a) that 
 
(5.6b) 0

,,,
=!+!+!

a

cbd

a

bdc

a

dcb
 

 
Thus there are as many conditions (5.6) as there are coefficients a

bcd
C . So the a

bcd
C  can 

always be set to enforce (5.6). But we must still investigate whether or not the conditions 
(5.6) could constrain the curvature tensor [8]. There are 

 

(5.7) 6/)23(
!3

)2)(1(
)1( 2

++=
!!

+!+
ccc

ccc

ccc
nnn

nnn
nnn  

 
conditions (5.6) which constrain the 
 
(5.8) 4/)1( 22

+
cc
nn  

 
second derivatives of the 

uv
g . It follows that there are still 

 
(5.9) 12/)1(6/)23(4/)1( 22222

!=++!+
ccccccc
nnnnnnn  

 
degrees of freedom. This is also the number of independent elements of the curvature 
tensor [8]. So the conditions (5.6) do not constrain the curvature tensor. Kilmister’s 
example is for 4=

c
n ; but the point he makes applies to all 

c
n . 

 
 There is some complexity, not to say confusion, in the terminology used by 
various authors for the sort of coordinate system that interests us here. [8] calls systems 
that satisfy (5.4), at a pole, geodesic. [6] calls such systems, with coordinate axes defined 
by geodesics emanating from and in the neighbourhood of a pole, normal. [9] calls such 
systems Riemannian; we call them geodesic. [9] calls systems for which, at the pole, the 
metric tensor is diagonal with elements equal to 1± , local Cartesians. [7] calls such 
systems natural; and, of course, natural coordinates can satisfy (5.4). [9] reserves the 
term geodesic for systems where the Levi-Civita connections vanish at a pole; this 
criterion can thus apply to non-Riemannian spaces, for which a metric is not defined, as 
well as to Riemannian spaces. [9] reserves the term normal for systems defined by a set 
of parametric surfaces. 
 
5.2 Kilmister’s Derivation Of (4.8) 
 

The following argument was communicated by Clive Kilmister in a letter. 
Passages or expressions in square brackets, thus [], are mine. 

 
" If one does the cubic transformation 
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(5.10) dcba

bcd

aa
xxxCxx +!   [ 4=

c
n ] 

 
on geodesic coordinates you have 80 coefficients a

bcd
C  and these are just enough to allow 

you to apply the conditions ([7], Equ. (36.7), p.79) 
 
(5.11) 0

,,,
=!+!+!

a

cdb

a

bcd

a

dbc
 

 
 (which I say produces 'canonical coordinates'- Ibid. p.79). Now in geodesics 
 
(5.12) a

dbc

a

cbd

a

bcd
R

,,
!"!= ;  [Riemann-Christoffel or curvature tensor] 

 
(in my sign convention). 
 
 From (5.11) 
 
(5.13) a

cdb

a

bcd

a

dbc ,,,
!+!=!"  

 
so that (5.12) becomes 
 
(5.14a) a

bcd

a

cbd

a

bcd
R

,,
2 !+!=  

 
Interchange b  and c  
 
(5.14b) a

bcd

a

cbd

a

cbd
R

,,
2!+!=  

 
These two give 
 
(5.15) a

bcd

a

cbd

a

bcd
RR !=" 23

,  
 
But 
 
(5.16) a

dbc

a

cbd

a

dbc

a

cdb

a

bcd
RRRRR +!=+=! ;  [[8], Equs. (32.3) and (32.4), p. 51] 

 
Hence 
 
(5.17) )(

3

1

,

a

dbc

a

cbd

a

bcd
RR +=!  

 
This is the key to everything. 
 
 Since 
 
(5.18a) p

bcap

p

acpbcab ggg !+!=
,

;  [[8], Equ. (20.4) et seq., p.27] 
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we have [at the pole of geodesics] 
 
(5.18b) p

dbcap

p

dacpbcdab ggg
,,,

!+!=  
 
and using (5.17) gives 
 
(5.19) )(

3

1

, cabdcbadcdab RRg +=  
 
Hence 
 
(5.20) abcdab

cd Rgg
3

2

,
=  

 
 The next step may need a little care. If we want to calculate efabR ,

 we can say 
 

(5.21) 

)(

][

)(

3

1

;

,,,,;

,;,

ap

p

efbap

p

bfepb

p

efapb

p

afeefab

fap

p

befpb

p

aeap

p

fbepb

p

faeefab

fap

p

bepb

p

aeeabefab

RRRRRRRRR

RRRRR

RRRR

++++=

!+!+!+!+=

!+!+=

;  [see (5.17)]  

 
after some cancelling [and because 0=!

p

ae
 at the pole of geodesics]. The first and third 

terms in the bracket, on the RHS of (5.21), vanish, because p

afeR  is skew, and the second 
and fourth terms are equal. So 
  
(5.22a) =efab

ef Rg
,

[ =cdefab

cdef ggg
,2

3 ] 0)(
3

2

; =+ fbaeefab

ef RRRg ;  [see (5.20)] 
 
[because 
 
(5.22b) 00

,,
=!=

lm

jkuv

ukvj

cdefab

cdef gggggg ] 
 
I know I've been using abg  when you prefer abg  but it is all easily converted. 
 
 How splendid canonical coordinates are!" 
 
The last of the equations (5.22a) 
 
(4.8) 0)(

3

2

; =+ fbaeefab

ef RRRg ; Kilmister Equation 
 
is clearly a tensor equation, the LHS being composed of sums and products of tensors, 
and so is the required result. 
 



 48 

 
6. Some Classical Mechanics  
 
6.1 Gravity In Empty Space  
 

By assuming that there is but a single particle in P ( 1=
p
n ) and choosing P  to be 

Minkowskian ( 4=
d
n ) we have 

 
(6.1) 4=

c
n  

 
If C is flat and 
 
(6.2) qx =  
 
we can require C!P.  We can, however, make contact with Einsteinian gravity by further 
assuming that C is, in general, curved and that, only as the curvature evanesces, is C!P 
possible. 
 

The curvature of C is governed by the Kilmister equation which states that the 
Kilmister tensor vanishes 

 
(4.8) cfbaeefab

ef

ab nfebaRRRgK ,...2,1,,,;0)(
3

2

; ==+!  
 
where 

ab
R  is the covariant Ricci tensor. We say that (4.8) can have to do with Einsteinian 

gravity because, when 
 
(6.3) 14;1;0;0 =!==== cdp

j nnnvf , 
 
the representative point at X moves along a geodesic of C and the particle in P moves so 
that 
 
(6.4) qx && =  
 
where the coordinates x  in C are geodesic with pole X. When there is curvature neither 
X nor the particle in P  can move so that qx && =  is constant. Notice that solutions of 
 
(6.5) 0=

ab
R  in C 

 
are always solutions of (4.8) but not vice versa. 
 

If we take the original classical model literally, the space between the point 
particles in P is empty. It is reasonable to assume, therefore, that, for the purposes of 
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theory, there is no distributed matter in C. This idea is supported by the fact that, given 
suitable dimensionality, signature and metric, (6.5) is Einstein’s original law of gravity in 
the empty space between distributions of matter. 

 
But we may be obliged to accept that physical space-time contains a vacuum 

energy; and, even though C is a mathematical artefact, given (6.3) we can assign suitable 
properties to C. Further, there seems to be no bar to approximating a large number of 
particles in P to a continuous fluid. 
 
6.2 The Significance Of 4=

c
n  

 
The dimensionality 4=

c
n  has a special significance in relation to the laws (6.5) 

and (4.8). The tensor equation (6.5) expands to 
 
(6.6) 2/)1( +

cc
nn  

 
unique PDEs. But (6.5) is the contraction of the tensor equation 
 
(6.7) 0=

d

abc
R  

 
where d

abc
R  is the Riemann-Christoffel or curvature tensor. The condition (6.7) defines 

the space as flat [8], [9]; and it comprises 
 
(6.8) 12/)1( 22

!
cc
nn  

 
unique PDEs [7]. We deduce that solutions of the tensor equation (6.5) cannot imply 
curvature if 
 
(6.9) 412/)1(2/)1( 22

<!"#+
ccccc
nnnnn  

 
because, under condition (6.9), (6.5) will imply (6.7). So, given (6.5), curvature is only 
possible if 
 
(6.10) 4!

c
n  

 
The same is true for the solutions of (4.8) since (4.8) also comprises 2/)1( +

cc
nn  PDEs. 

When 4=
c
n , given that there is only one time-like coordinate, the remaining three must 

be space-like. So, if C is curved then, the minimum dimension allowed for P is four and 
the geometry of P is then Minkowskian. 
 
6.3 Some properties of (4.8) In Relation To GR 
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 The material of the following section, equs. (6.3) to (6.17), is better set out in the 
notes [25]. In particular [25] makes clear that (4.8) is entirely geometrical; the Kilmister 
equation describes the evolution of the metric tensor given four sets of geometrical 
boundary conditions. If we wish to understand the implications of this solution for 
matter-energy-stress we must substitute the resulting metric tensor into Einstein’s 
equation (6.11). 
 

We now confirm the assumptions of Section 6.1 so that the Kilmister equation can 
make contact with GR. As we remark above, in the classical model, there is no matter 
between the point-particles in P ; and we assume, for the purpose of theory, that there is 
no distributed matter in C.  

 
Einstein's later law, for gravity in the presence of a continuous distribution of 

mass-energy-momentum-stress, allows us to investigate this idea. The law is 
 
(6.11) ;;0

2

1 u

v

u

v

u

vababab RRGTgG !"#=$+%+  [3] 
484

10076.2/8
!"=#$% cG cm 1! gm 1! sec 2  

 
where !  is the cosmological constant, G  is Newton’s gravitational constant and 

ab
T  is 

the mass-energy-momentum-stress tensor. 
 

A word about the origin of (6.11). The classical conservation laws of mechanics 
can be expressed by saying that the divergence of 

ab
T  vanishes 

 
(6.12) 0

;
=

a

ab
T  

 
Einstein proposed that there should be a geometric tensor that corresponds to 

ab
T ; thus 

the curvature of space-time would be related to the matter content. This tensor, like 
ab
T , 

would have a zero divergence. The geometric tensor 
ab
G  has this property; and Einstein 

further proposed that these two tensors, the mechanical 
ab
T  and the geometric 

ab
G , 

should be proportional 
 
(6.13) 0;0

;
==!+ a

ababab
GTG  

 
He later added the !  term on cosmological grounds; and, later still, he came to regard 
this addition as a blunder. The value given for the constant !  is determined by the 
requirement that, under conditions of weak gravity and low speed, (6.13) must agree with 
Newtonian mechanics; see Poisson’s equation [10]. 
 

If 
 

(6.14) 0=
ab
T  
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that is, the space-time is truly empty then, 
 
(6.15) abababab gRgG !="!#= .  
 
Substitute this last result into 
 
(4.8) 0)(

3

2

; =+ fbaeefab

ef RRRg ; Kilmister Equation 
 
and we get 
 
(6.16) 00 =!="

ab
R ;  see (6.5) 

 
Suppose, however, that the space-time is not truly empty; that is, there is no matter 
between the particles but, there is energy. We then have 
 
(6.17) !"+"#$#="#%&$#!#= u

v

u

v

u

v

u

v

u

v

u

vababab TTGGRTgG )(
2

1

2

1  
 
which can be substituted into (4.8) to give a tensor equation for 

ab
T . If we believe that 

space-time is truly empty then 
ab
T  and !  vanish and this equation is a null identity; see 

(6.5/14/16). But, otherwise, (4.8) gives possible distributions of energy-momentum-
stress. This restriction is not as stringent as might be supposed; because the PDEs (4.8) 
are of fourth order they are capable of much flexibility. 
 
6.4 Newtonian Approximations 
 

The Kilmister equation is of mind-boggling complexity! Just to set it up, using 
(say) the spherically symmetric (SS) metric of Schwarzschild [8], we require a computer 
to do the algebra. The resulting PDEs occupy pages. Formal solution, by computer, fails 
(so far). Yet the computer does show that the Schwarzschild metric satisfies both (6.5) 
and  (4.8) exactly as it should. As far as I can see we have no recourse but to resort to 
special cases and approximations. 

 
 Suppose that the gravity is weak, so that the space-time is nearly flat, and that 
matter/ energy moves slowly or not at all. Then we may use quasi-Galilean coordinates 
and assume that the metric is, approximately, Minkowskian. Thus 
 

(6.18) 
4;1;1;21,21

3,2,1;21,21,,0

44

44

===<<!!"=!""=

=µ!+=!+"=#==

µµ

µµ

cdp

jk

jk

nnngg

ggkjgg
 [7], p. 101 

  
where !  is a dimensionless potential proportional to that of  Newton. Since we are 
aiming at a Newtonian approximation we assume (6.16) at the outset; the !  term was not 
envisaged by Newton, is meaningless in the context of his theory and was rejected, 
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ultimately, by Einstein. Note: the expressions (6.18), when compared with those given by 
Eddington [7], replace !  with !" . The reason for this is that Eddington, in his 
derivations, refers to 
 

(6.18a) 0;
2

>=! m
rc

mG  

 
as the potential due to a single point particle at the origin; whereas the usual definition is 
 

(6.18b) 
rc

m

2

G
!="  

 
so that the Hamiltonian expression for the radial acceleration 
 

(6.18c) 
2

2

r

m

dr

d
c

G
!=

"
!  

 
is negative (i.e., gravitating matter attracts). 
 

We now investigate the ab
T  dictated by (4.8) in the manner alluded to at (6.17). 

In the quasi-Newtonian approximation only one element of ab
T  is non-zero; it represents 

the energy density in space. Because, by hypothesis, there is no material, between the 
particles, this energy density is not due to matter. 

 
In quasi-Galilean coordinates the stress-free energy tensor is approximated by 

 

(6.19) 
ds

dx

ds

dx
cT

ba

ab !" 2   [7], p. 102 

 
where !  is the proper mass-density equivalent of the supposed energy density !2c  (an 
invariant). Under the conditions cited it is legitimate to make the following further 
approximation. In the space between particles 
 
(6.20) )44()(;0;)21(;0; 24

4

244 !=="+#=$==#= abTTcTgTTTcT a

bub

aua

b

ab  
 
Therefore 
 

(6.21a) 
4,....2,1,;3,2,1;;0

);21(
2

);21(
2

224

4

==µ!=

"+#
$

="+#
$
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µ

babaR

cRcR

a

b

;  see (6.17) 

 
From (6.18) we get 
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(6.21b) )41(
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;
2

2
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2 !+"
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#

$=%= µµ cRcRgRR ub

u

aab  

 
neglecting 2

!  compared to unity. We shall later treat 2/
2!"c  as a first order small 

quantity. Therefore (6.21b) can be simplified to 
 

(6.21c) 
4,....2,1,;;0

;
2

;
2

2

44

2

=!=

"
#

$%"
#

$%µµ

babaR

cRcR

ab

 

 
 It can be shown [7, p. 102] that, to the same degree of approximation as at (6.18), 
 

(6.22a) =!=
aaab
RbaR ,,0  !

2 ;  
24

2
22

)(x!

!
+"#$ ; cx /

4  is coordinate time 

 
and, if !  does not involve the time, then 
 
(6.22b) !"#=$=

2
,,0

aaab
RbaR  

 
Result (6.21c) combined with (6.22b) gives 
 

(6.23) !
"

=!
#

=$%=&
2

22 4

2 c
cR

aa

G  

 
which is a version of Poisson’s equation [10]. In this case, given the conditions for the 
Newtonian approximation, (6.23) relates the putative energy density !  to the potential 
! . Now suppose that we substitute (6.22) into (4.8) instituting (6.18), that is, the same 
level of approximation that leads to (6.22). We have, with quasi-Galilean coordinates, 
 
(6.24) !! efaa

ef

efaa

ef RgRg
,;

 (2  0;,0); ;

2
!"!# fbae

ef

efab

ef RRgbaRg  
 
Thus 
 
(6.25a)  (2  !=" 0)2  0=! ;  see (6.21c/22/4.8) 
 
and, if !  and !  do not involve the time, then 
 
(6.25b) 00)( 222

=!"#=$""  
 
We see, at once, that !  satisfies versions of the theta equation. Given that C!P is 
Minkowskian and the coordinates are Galilean then the theta equation 
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(3.26b) cvjku

ukvj nvukjgg ,...2,1,,,;0)( ,, ==! ;  Scalar Theta Equation, 
 
with !"# , becomes (6.25a). Likewise, with !"# , if C!P  is Euclidean and the 
coordinates are Cartesian we get (6.25b). Further the result (6.25a) shows that the energy 
density propagates according to the wave equation; but, if the energy density is 
stationary, then the result (6.25b) shows that it satisfies Laplace equation. 
 
 There is another way of looking at the first result (6.25b). The QM Hamiltonian 
for a single Newtonian particle in E3, acted on by a scalar gravitational potential )(qv , is 
 

(6.26) !
=

""+"
3

1

2 )()(;);(
2

1

j

j IqvQVIqQQVP
m

H  

 
where m  is the particle mass. Here the Hamiltonian operator is quadratic, the space is 
Euclidean, the coordinates are Cartesian and v  is a function characteristic of the system 
which, therefore, must be a candidate for ! . Comparing (6.26) with the general case 
(3.18) we see that the metric is 
 

(6.26a) 3;
2

==
!

= dc

jk

jk nn
m

g
K

 because, by hypothesis, 1=
p
n   

 
proportional to the Euclidean metric. The theta equation for v  is 
 
(6.27) 0)(0)(4 222222

=!!"=!! vvm K ;  see (3.2/ 6.25b) 
 
The relation between v  and the dimensionless !  is 
 
(6.28) !=

2
mcv  

 
 That Newtonian approximations of the Kilmister equation produce versions of the 
theta equation is hardly a surprise; the Kilmister equation derives from the theta equation. 
But this circumstance provides a check and allows us a limited freedom to calculate. 
 
6.5 Extra Terms In The Newtonian Approximation 
 
 The spherically symmetric (SS) solutions of  the equations (6.25b) are 
 

(6.29) 
43

2

2

1
krkrk

r

k
+++=!  

 
and 
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(6.30) 
2

1
l

r

l
+=!  

 
where 

2141
,,,.... llkk  are constants; the symmetry is about the origin. When r  is small the 

terms rk /
1

 and rl /
1

dominate (6.29/30); when r  is large the term 2

2
rk  dominates (6.29) 

and 
2
l=!  is constant. We recognise the 

1
k  term at (6.29) as corresponding to the 

Newtonian potential due to a gravitating point mass at the origin (for gravitation 0
1
<k ). 

We must not, of course, allow r  to become so small that the approximating condition 
1<<!  breaks down; see (6.18). We also recognise 

4
k  as the arbitrary potential floor in 

the Newtonian theory which, in this case, must be set to zero (to ensure 1<<! ). In other 
words these are the customary terms in the SS solution 
 

(6.31) 
4

1
k

r

k
+=!  

 
of the usual potential equation for empty space 
 
(6.32) 0

2
=!"  

 
But what of the extra terms rkrk

3

2

2
+  at (6.29)? The usual classical field 

equations are of second order. The difference between the solutions (6.29) and (6.31) is 
an illustration of the fact that, because the theta equation is of fourth order instead of 
second order, its solutions contain two extra terms. To have escaped experimental 
detection, in this case, the extra terms (those involving 

2
k  and 

3
k ) must be either zero or 

very small; if the latter then, perhaps, the corresponding terms are significant only at 
cosmological distances. 

 
Suppose we regard these extra terms as providing a perturbing radial acceleration 
 

(6.32a) )2(
)(

32

23

2

22
krkc

dr

rkrkd
c +!=

+
!  

 
We see that this perturbation is of quite a different form to the GR term, in the orbital 
equation, that produces the advancement of the perihelion of Mercury; that term is 
proportional to 4

/1 r  [10], p. 27 and [8], p. 117. 
 
We could, of course, invoke the principle that the influence of point masses or 

charges must decrease with distance; in which case 0
2
=k  and 0

3
=k  by fiat. If we 

invoke this principle on all relevant occasions the new theory may not differ so much 
from the old. The principle is used, for example, as a boundary condition when 
calculating the Schwarzschild metric [8], p. 115. It is assumed that, at great distance from 
a single isolated particle, the space becomes Minkowskian. The principle is also used to 
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reject one of the Bertrand solutions as ‘unphysical’. Bertrand [10], p. 90 found that 
central orbits, under a power law potential, are closed only if the power is 1!  or 2 ; the 
latter result was rejected. 

 
We do not invoke the principle here. Rather we allow the extra terms to generate 

an energy density !2c  calculable from (6.23) 
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;  see (6.23/29) 

 
If we compare (6.33) with (6.30) we see that some of the constants are connected 
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 If r  is large enough then the energy density is appreciably constant at value 

!/12
2
k ; see (6.33). The radial acceleration (along a line to the particle at the origin), of a 

test particle of infinitesimal mass, is 
 

(6.35a) !
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''=

(
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r

k
c

dr

d
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and, if r  is large enough then, this approximates 
 
(6.35b) !"#$+# rrkckrkc ;2)2( 2

2

32

2  
 

Consider two test particles of infinitesimal mass. Place them at points j
x )1(  and 

k
x )2( . Then their Newtonian equations of motion are 
 
(6.36) 3,2,1,;; )2(,

2

)1(,

2 =!µ="#=="#= !

!

µ

µ
xxcxxxcx &&&& ;  see (6.28) 

 
Define the displacement µ! of one particle with respect to the other by 
 
(6.37) µµµµµ !+"" xxxx )2()1( ;  
 
Then, assuming that r  is large, (6.29/36) give 
 
(6.38) !"#$%=&+=&$=#%& µ

''

µ
rkcxxcxxcrk ;2; 2

2

)1(,

2

)2(,

22

2
&&  
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Thus, at a sufficient distance from the origin, the test particles experience a relative 
acceleration/ deceleration proportional to their distance apart and along the line joining 
them. By contrast, the terms ,/1 rk  and rk

3
 causes an acceleration/ deceleration of  both 

particles but in a radial direction. 
 

Now suppose that there are many gravitating particles at a great distance from the 
two test particles. Because the first equation (6.38) makes no reference to the origin we 
have 
 
(6.39) !"#$%# µµ

222

2
;2 kKKc&&  

 
the summation being over the gravitating particles. This last result relies on the additivity 
assumed for potentials in Newton’s theory.  
 
6.6 Dark Energy? 
 

Standard cosmological models [3] predict, without benefit of ! , that the universe 
expands, roughly, according to the Hubble law; but, at great distance/ time, the 
predictions require that the expansion slows. Recently, however (1990s), measurements, 
using supernovae as standard candles, suggest that, at great distances, the expansion is 
accelerating. The effect is said to be due to dark energy. 
 

To explain this phenomenon some theorists have resurrected the !  term; but the 
new !  has a sign opposite to that of the quantity originally introduced by Einstein which 
was required to stop the expansion! Other theorists have introduced mysterious scalar 
fields to explain the extra acceleration. The new theory, however, seems to predict the 
dark energy effect quite naturally. 

 
We have shown above that, in the Newtonian approximation at least and at great 

distances from gravitating particles, a constant density of energy is imposed throughout 
space. This has the effect that two test particles, of infinitesimal mass, experience a 
relative acceleration/ deceleration proportional to their distance apart and along the line 
joining them. This motion is superposed on any other motions (that may be predicted by 
standard cosmological theories) including the Hubble recession. The constant of 
proportionality is 

2

2
2 Kc! ; see (6.39). 

 
Can we estimate a value for 

2
K ? In particular what is its sign? In the present state 

of the universe the rest energy of the matter (including gas and dark matter) dominates. 
We make the assumption, common to standard cosmologies based on GR, that, over large 
enough regions, the mean matter-density 

0
!  is constant [3].  

 
We make three additional assumptions in order to apply the above Newtonian 

analysis to large regions of the universe: a) the curvature is small; b) the velocities of the 
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matter fluid are small compared to c ; c) the total energy of the universe is zero. This last 
is a radical hypothesis; but it gives a definite sign and magnitude to 

2
K . 

 
 As argued above the extra terms, in the potential of a distant gravitating particle, 
give rise to an energy density !/12

2
k ; see (6.33). So, according to the ideas that lead to 

(6.39), many such particles give rise to a constant total energy density 
 

(6.40) 
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2 1212
Kkc

!
=

!
=" #  

 
Because both !  and 

0
!  are appreciably constant assumption c) can be expressed as 

 
(6.41) 

00
0 !"#!$%!+!  

 
Given (6.40) this implies 
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Therefore, according to (6.39), the infinitesimal test particles recede from one another. 
Assign a typical estimate of 
 
(6.43) 30

0
108

!"=# gm cm 3! ;  roughly the closure value 
 
and the acceleration of recession per unit of separation is 
 

(6.44) 36

00
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2

2
10236.2
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4

6
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!"=#$=#
%

=! GcKc sec 2! ;  see (6.39) 

 
In order to compare (6.39/44) with the Hubble law 
 
(6.45) HHH ;

2 µµµµ !"!#!"! &&&  is the Hubble constant 
 
we compute 
 

(6.46) 18

02

2
10495.1

3

4
2

!"=#$+=!+ GKc sec 1!
! 14km sec 1! per 6

10 ly 

 
This value is at the lower bound of modern estimates of the Hubble constant (15  to 30  
km sec 1! per 6

10 ly). So the effect predicted by the above argument is significant. 
 
 The situation studied in the above argument may be summarised as follows. 
Gravitation is a phenomenon by which (positive) matter/ energy tends to clump whereas 
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(negative) dark energy tends to spread out. There is a temptation to regard this negative 
energy as that due to the original antimatter which, it is supposed, was an equal 
companion to the matter created by the Big Bang. Hence the above assumption that the 
total energy of the universe is zero. 
 
6.7 The Need For An Exact Cosmological Investigation 
 
 Keep in mind that the assumption (6.41), that !2c  (dark energy-density?) is the 
negative of the rest energy of the mean mass-density 

0

2!c , is debatable. Further the 
analysis is crude. Perhaps the results are misleading. We need a full cosmological 
investigation which marries the Kilmister equation with (say) a Robertson-Walker model 
of an homogeneous and isotropic universe [3]. Machine algebra would be a necessity. 
 
 A first go at this project is reported in [25] and [26]. The results, although mostly 
approximate, are very satisfactory; they are summarised, briefly, in the Overview. We 
may need to recalculate the various cases with an evaluation of Term1 and Term2 in 
addition to every final calculation of the Kilmister tensor; these would show what the 
balance of the approximation is in 0!

a

b
K . In addition it would be desirable to give 

analytic expressions for the Ricci and Einstein tensors under the cosmological metric; 
(see the Introduction to [25]). 
 
6.8 Two Particles- Flat C- Electrostatics Or Gravity? 
 

Hitherto, when examining the field equation (4.8) or its flat-space progenitor 
 
(3.25) 0gg vjku

ukvj
=! ,, )( , 

 
we have considered a single particle; thus 

dc
nn = . This raises a question: how does the 

new formalism deal with more than one particle? 
 

We consider the simplest problem, involving only (3.25), first! Two particles, in 
an Euclidean 3-space P, move under a scalar potential according to Newtonian 
mechanics. We thus have 3=

d
n  and 6n

c
= . The appropriate Hamiltonian operator, 

expressed in the Q-diagonal representation, is  
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where the symbol !  is now used for the operator that represents the Newtonian potential 
(energy). Given its position in the Hamiltonian (6.47) the function !  is a candidate for 
! . Particle 1 has mass 

1
m  and Cartesian coordinates 321

qqq ,, ; and particle 2 has mass 

2
m  and Cartesian coordinates 654

qqq ,, . The metrical coefficients of C are obtained by 
comparing the expression (6.47) with the general case (3.18) 
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(6.48) kjgv
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21
KK

 

 
where K  is a constant with dimensions of (mass) 1!  that ensures that the metric has no 
dimensions. The coordinates and the space are flat; thus (3.25) applies to the whole of C. 
Substituting the metric, with an appropriate choice for ! , (3.25) becomes 
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In more detail 
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and then, more succinctly, cancelling through by )4/(1 2

K  we get 
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 According to Einstein the expression of physical law must be independent of the 
choice of coordinates. In this case )(q!  must be an invariant independent of rotation and 
translation of the coordinate axes in P. The only such invariants, associated with the 
classical model, are the distance in P between the two particles 
 
(6.50) 2/1263252241 ])()()[( qqqqqql !+!+!+"  
 
and functions of same. So !  is a function of l . Therefore 
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and (6.49c) becomes (after division by 2
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m1m1 )//( + ) 
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The general solution of this equation is (
41
cc ,...,  are constants of integration) 

 

(6.53) 
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1
clclc

l

c
+++=! ;  compare with (6.29) 

 
If l  is small enough, we may neglect the terms lclc

3

2

2
+ . Then !  provides an inverse 

square force (of attraction if 0
1
<c  and of repulsion if 0

1
>c ) along the line joining the 

particles. In this sense the new field equation (3.25) is successful. The neglected terms 
are supposed only significant when the distances are cosmological. But, depending on the 
signs and magnitudes of 

2
c  and 

3
c , other behaviours are possible. For example, if 0

2
>c  

and the kinetic energy is finite then, the particles are (classically) confined, irrespective 
of the sign of 

1
c , and l  is bounded; (pairs of quarks are confined in an analogous 

manner). 
 
 Strictly speaking, because C is flat, we could say that the result (6.53) does not 
apply to gravity; rather, we might say, it must apply, if it applies to any force in nature, to 
electrostatics. But (6.18), which can be described as a Newtonian approximation to a GR 
metric, leads, via the tensor formalism of GR, to (6.25/29)! Thus Newtonian 
approximations, as in the conventional physics, require the electrostatic and gravitational 
potentials to have the same form. 
 
6.9 Two Particles- Flat C With A Different Hamiltonian 
 
 According to Newtonian mechanics there is another Hamiltonian operator which 
might be used, instead of (6.47), in the above argument 
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which is part of a more general Hamiltonian 
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The relationship between these Hamiltonians and that at (6.47) can be summarised as 
follows: 
 

(6.55) =+!
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Define (with a change of notation) centre of gravity operators 

0µQ  and coordinate 
difference operators µ

!Q   
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and their conjugate momentum operators 
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which satisfy as identities (see Section 2) 
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Observe that 
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So the only difference between the Hamiltonian operators (6.47) and (6.54b) is the 
assumption, at (6.54b), that !  depends only on the coordinate differences. Also using 
(6.54b) 
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It follows that 
 
(6.60) ! " OQHQ == µµ 00

, &&&  
 
That is, the centre of gravity is in uniform motion providing that !  depends only on the 
coordinate differences. This fact we know from classical mechanics; but here it has been 
deduced using only the operator calculus. Further, from (6.54b), using the operator 
calculus 
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which is the operator equation of motion of the coordinate differences. This equation can 
be deduced using (6.54a/57). So, as foreshadowed at the beginning of this section, we can 
use (6.54a) instead of either (6.47) or (6.54b) to deduce the equation governing !  
providing that we accept that !  depends only on the coordinate differences. 
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 The expression (6.54a) has the appearance of a single particle Hamiltonian; see 
(6.26). So we must choose 33,1 =!== cdp nnn  and regard the coordinate differences 
q!  as the coordinates q  in an E3. From (6.54a), 
 

(6.62) 3,2,1,;
2

=
!

"
= vu
m

g uvuv

K
;  see (6.26a) 

 
Thus (3.25) becomes 
 

(6.63) 0)(;0 22
3

1,

, =!""#!$%=%&
=kj

jjkk

kkjj gg ; see (6.27) 

 
The remainder of the argument parallels that leading to (6.50) and on to (6.53).  
 
6.10 Two Particles- Small Curvature Of C 
 

We now examine the hypothesis that curvature of C characterises gravity. We 
assert this hypothesis, above, when we attempt to match C to the space-time of GR by 
choosing 1;4 == pd nn . But there is an overriding problem connected with the setting 
up of gravitational field equations: namely, the choice of a metric suitable to the 
situation; and this problem persists even with the simplification that the gravitational field 
is weak and can be represented by a single scalar function of the space-like coordinates 
! . The difficulty is that, with more than one particle, the dimension of C is a multiple of 
that of P . This means that the potential complexity of the metric of C grows rapidly with 
the number of particles. In general we do not have the prop of a corresponding 
Hamiltonian (see the previous section) from which to ‘read off’ a metric for C. 

 
We can, however, make a start by considering what happens when there is no 

gravity. There is a theorem, concerning flat spaces [9], pp. 59, 82, that allows the metric 
of C to be of the form 

 

(6.64a) 1;)(
1
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=

j

n

j

j

j

c

dqds  

 
where the q  are global, orthogonal and flat. The theorem states that we can always set up 
locally Cartesian coordinates at a given point. If, however, C is flat then a single set of 
these coordinates can be used everywhere in the space. Thus we have only to choose the 
pattern j

! . Suppose that the pattern is known for P; for example, that P is Minkowskian 
and its coordinates are Galilean. Then it is sufficient that the pattern of the j

!  consists of 
a repetition of that which pertains in P  with one repeat for every particle. If, in addition, 
we scale the coordinates, by fixed factors, we do not change their orthogonal character; 
the metric is still diagonal. Thus 
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(6.64b) kjgdqgds jk

n

j

j

jj

c

!"==#
=

0;)(
1

22  

 
where the jj

g  are constants. 
 

When the gravity is weak the metric will, we suppose, approximate the forms 
(6.64). One way to choose the metric of C, in the weak gravity case, is to equate the 
coordinate accelerations, obtained from an invariant scalar potential ! , with those given 
by suitably approximated geodesic equations. The resulting equations link the Christoffel 
symbols of C to the derivatives of ! . We then require that the metric should be one that 
satisfies these PDEs and demonstrates curvature; naturally, we choose the simplest that 
will do. 
 

Assume that P contains two particles (
p
n =2) and is Minkowskian with Galilean 

coordinates ( 8,4 ==
cd
nn ). Thus particle 1 has mass 

1
m , three spacelike coordinates 

321
,, xxx and one timelike coordinate 4

x ; and particle 2 has mass 
2
m , three spacelike 

coordinates 765
,, xxx  and one timelike coordinate 8

x . Suppose that all coordinates have 
the physical dimension of length. Assume that the gravitational field depends only on the 
instantaneous positions of the particles so that !  is a function of the space-like 
coordinates alone; this is consistent with the usual Newtonian approach. We have in mind 
that, without gravity, the repeated Minkowski/ Galilean pattern is then appropriate for the 
metric of C 
 
(6.65) ;0;1,1,1,1,1,1,1,1 kjgg jkjjj !"=######$%=   see (6.64a) 
 

The approximate equations of motion, generated from ! , are 
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where !  has the dimensions of energy. Here Greek suffices have the range 3,2,1  while 
Roman suffices have the range 8,...,2,1 . Unless stated otherwise we use this convention 
for the rest of the calculation. The geodesic equations are, by contrast, 
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Under the approximating assumptions 
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8

8
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4

!"!!"!= &&  is the speed of light 
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Thus, equating the accelerations (6.67/68), 
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Equating the coefficients of unity on either side of these equations 
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 are either first order small or zero. It 

follows that we need not trouble to equate the coefficients of i
x&  or of ji

xx &&  at (6.69). 
 
 Any choice of the metric is allowed that both satisfies the equations (6.70) and 
approaches (a possibly scaled version of) the form (6.65) uniformly as 0!" . We 
therefore make a simple choice in the hope that it satisfies all the equations (6.70)! Thus 
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from which 
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Therefore the metric (6.71) satisfies the equations (6.70). 
 
 We can calculate the Ricci tensor from  
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s

basab
;  [8], pp. 50, 52 

 
because the k

ij!  are either zero or small. We find 
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From which it follows that the only surviving terms of the type (6.65) are (see (6.72)) 
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Therefore 
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 With the same approximations (4.8) becomes 
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Substituting (6.71 /77) into (6.78) we have the approximation 
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being the two particle result at (6.49c).   
 

The metric (6.71) suggests that the curvature of C resides in the time-like 
partition. The question, as to whether the coordinate space is truly flat, can be resolved by 
calculating the elements of the Riemann-Christoffel tensor 
 
(6.80) l
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l
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,,.

!"!# ;  to first order small quantities  [8], p. 50 
 
To demonstrate curvature we do not need to identify all the elements l

jnpR
.

 that may be 
non-zero; it is sufficient to demonstrate that at least one does not vanish. Potentially non-
zero Christoffel symbols are 
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whereas 
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giving for example 
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Therefore, if any of the µ!"

,
 are non-zero, the coordinate space is curved; this is always 

the case given the solution (6.7). Similar results hold when µ  is replaced by ).4( +µ  
 
 
 
 
6.11 More Than Two Particles- Flat C 
 
 In order to discuss the case of  2>

p
n  we generalise the argument given in 

Sections 6.8/9. The argument given in Section 6.10 can, almost certainly, be generalised 
to the case 2>

p
n ; but it introduces extra complications into a topic which is already 

complicated. 
 

We consider P to be E3 again. Then the simplest choice for the metric of C is 
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Substituting (6.84) into (3.25)  
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This equation, although elegant in appearance, does not give a context for ! . To provide 
such a context we can generalise the Hamiltonian operator (6.47) 
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where we use the same convention, for the notation of momenta, as pertains in Section 
8.2. Greek indices run in the range 1,…,

p
n ; Roman Italic indices run in the range 

1,…,
c
n ; Roman Text indices run in the range 1,2,3. The Hamiltonian (6.86) defines the 

motion of a collection of Newtonian particles, in E3, under the scalar potential 
).(q! Then !  is a candidate for !  and comparison of (6.86) with (3.18) gives the metric 
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Substitute (6.87) into (3.25) and we get 
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after multiplying through by constants. 
 

As before !  must be a function of the invariants associated with the geometry of 
the particles in P. These include 2/)1( !

pp
nn  distances between the particles and various 

angles etc. Because the angles etc. are functions of the distances we assume that !  is a 
function only of the distances 
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where we use the same convention for notation of coordinates as at (6.86). When we 
move the th

!  particle we change the distances !"#$!#l  given ! . Therefore, referring 

to change of the coordinates of the th!  particle, 
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where (see (6.89)) 
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and so 
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where 
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and !"#"$  is the angle between the lines !"  and !" . 
 

For example if 3=
p
n  and 1=!  then (6.93) gives 
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where 
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The appropriate version of (6.88) is 
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which can be written out explicitly by permuting the pairs of suffices in (6.95a). Consider 
the simpler PDE 
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Solutions of (6.97) are also solutions of (6.96). Now suppose that !  is assumed to be a 
function of a single length 

1221
lll =! (say). Then (6.97) reduces to 
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with solution 
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Because (6.97) is linear the sum of all such solutions is also a solution of (6.96/97) 
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It is obvious from (6.93/94) that a generalisation of (6.100) 
 

(6.100a) !""!

!>"
!" "!

"!
==# $ cc

l

cpn

;
,
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is always a solution of (6.88). There is nothing in the equations that prevents us from 
defining 
 
(6.100b) !""! # mmc G ;  see Newton’s law of gravity [3], [10] 
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But, equally, there is nothing in the equations that requires (6.100b). Strictly, the !m , as 
they appear in (6.100 b), are gravitational masses; whereas, as they appear in the 
Hamiltonian (6.86), they are inertial masses. 
 

The solutions (6.100/100a) are not, of course, the most general solutions of the 
PDEs (6.96 /88); the general solutions will contain additional terms. But (6.100) does 
show that pairs of particles are associated with an inverse distance potential term as in 
(6.53). In general !  is the sum of a regular function of the !"l  and one or more singular 
terms. The regular function has the property that it becomes constant as all the 0!"#l . 
The singular terms have the property that if any of the associated 0!"#l  then !"# ; 
that is, a singularity is a symptom of the existence of two or more particles. Singular 
terms like those at (6.100) generate an inverse square force, on a pair of particles, in the 
direction of the line joining them. This dominates if the particles are close. 
 

It might be, of course, that singularities of the kind (6.100) are not the only sort 
possible. The solutions of (6.93) might contain singularities generated by inverse powers 
or products of the !"l  of order greater than one. At short distances such singularities 
could dominate those of the kind (6.100); in that case the force between close particles 
would not be inverse square. This embarrassing eventuality seems unlikely; but it also 
seems tricky to prove that it is impossible! 
 
6.12 Introduction Of A Test Particle When 1>

p
n  And C Is Flat 

 
 When discussing gravity we often suppose that the field is sensed by a test 
particle of infinitesimal mass. In GR the field is characterised by the way adjacent 
geodesics of such test particles deviate from one another (equation of geodesic deviation 
[9], p. 90]). Suppose that we introduce such a test particle in addition to the system of 
particles of finite mass contained in P. Thus the number of particles increases from 

p
n  to 

1+
p
n . Let the infinitesimal mass be !m  where 1+=!

p
n . The PDE for !  then reads 

 

(6.101) 1];,1[;0

2
22

+=!"#$>>=%
&
&

'

(

)
)

*

+ ,
+

,
!#

# #

#

!

! - pp

n

nnmm
mm

p

;  see (6.88) 

 
Multiply by 2

!m  and we are left with the approximate PDE 
 
(6.102) 0)( 22 !"## $$ ;  see (6.25b/27) 
 
where 
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which has solutions of the form ].,1[)( pnl !"#$ "%  In fact 
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Thus, despite the reciprocal dependence on mass exhibited at (6.101), the introduction of 
the test particle has no effect on the potential. 
 
 
7. The Vector Potentials j

F And The Scalar Potential V  
 
 From their positions in the RHS of (3.18)/ (3.19a) we would describe the 

jj Ff !  and Vv!  as gauge potentials. In what follows we discuss their formal 
properties in the EM case. 
 
7.1 Identification Of The Coefficients j

F  In The EM Case 
 
 If (4.1) holds then the path of X in C is a geodesic. But if 
 
(4.5) 0/0 !"#$! vjf j  
 
 
then the path of X in C is not a geodesic. The classical tensor equation of motion (derived 
by eliminating the momenta from Hamilton’s equations acting on (3.19a)) is 
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where, of course, C may be curved. Now consider a single particle in Minkowskian P and 
flat C.  With Galilean coordinates the metric of C!P  is 
 
(7.2) 1,1,1,1,,0 +!!!=="=

jj

jjjk ggkjg  
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and, because the uv

g  are constant, (7.1) simplifies to 
 
(7.3) ( ) vm

vmjj

j

m

mmm qfvfqfgq &&&&
,,, 2)( ++!!= K ;  not summed on m  

 
Substituting the metric (7.2) into (7.3) 
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where the Greek indices run from 1 to 3 and the Roman indices run from 1 to 4. 
 
 We now compare these equations of motion with those of a single charged 
particle in an EM field 
 

(7.5) ( )
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 [5] 

 
where: m  is the mass, !  is the charge, cq /

4  is the proper time, q&  is the proper 3-
velocity, u  is the 3-velocity, a  is the 3-vector potential, !  is the scalar potential, b  is the 
3-magnetic induction, e  is the 3-electric intensity. These SR equations have received 
extensive experimental verification. Written in coordinate form (7.5) is 
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Multiply through by cdtdq /4  and we get 
 

(7.7) 
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These equations can be compared, directly, with (7.4) by regarding the j

q  as arbitrary. 
The comparison yields 
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(7.8) 
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The first three of these equations relate the 4-curl of the jf  to curla  and grad! . But the 

last two equations relate the gradient of v  to j

j

k ff , . If we define 
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j vffffffffvffv
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then we get a result consistent with (7.8). In consequence (3.19a) can be written 
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Taking account of (7.8), with appropriate definitions, this is 
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which can be shown to give the equations of motion (7.7) directly. Notice that the 
definitions (of the jf  in terms of the µa  and! )  are sufficient but they may not be 
necessary. This identification of the jf  is classical because it is based on (3.19a). 
 
7.2 The Impact Of The Theta Equation On Maxwell’s Equations 
 

When there is but a single particle in P, and C!P  is Minkowskian with Galilean 
coordinates, the metric is 
 
(7.12) 4;1;1,1,1,1,,0 ==+!!!=="= dpjj

jjjk nnggkjg  
 
The theta equation then becomes 
 

(7.13)  (2  0)2
=! ;   

24

2
22

)(q!

!
+"#$ ;  cq /

4  is coordinate time 

 
Notice that solutions of 
 
(7.14)  0

2
=! ;  standard wave equation [11] 

 
are also solutions of (7.13). Because the jf  are candidates for !  these results require that 
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(7.15)  (2  0)2

=a ;   (2  0)2
=! ; see (7.11) 

 
We consider the impact of (7.15) on Maxwell’s equations in more detail, as 

follows. With 3-vector notation Maxwell’s equations in the Lorentz gauge can be written 
as follows [12]: 
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where 
 

(7.18) 
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Given (7.16a/d), (7.17a) and (7.18) as definitions, five of the eight equations (7.16/17)  
can be deduced as identities. The first two of the vector identities [12] 
 
(7.19) aaaa

2).()(;0).(;0)( !"!!=#!#!=#!!=$!#!  
 
show that (7.16b/c) follow directly from (7.18). Regarding (7.16a) as a definition of !  
result (7.17 d) follows from (7.17a). Regarding (7.16d) as a definition of j  result (7.17b) 
follows from (7.19) and (7.16a); similarly result (7.17c) follows from (7.16d), (7.17a) and 
the last of the identities (7.19). We can also show that the components of the force fields 
satisfy the wave equation [11] 
 
(7.20)  ;0

2
=e  0

2
=b  

 
We deduce from (7.15) and (7.17c/d) that 

 
(7.21)  ;0

2
=j  0

2
=!  

 
That is the new equations (7.15) require that the current and charge densities satisfy the 
standard wave equation. This result seems, at first sight, to be contrary to experience. The 
equations (7.21) require that any disturbance in the current density j  or the charge 
density !  shall be propagated with speed c . But Dirac’s theory of the electron/ positron 
says that the instantaneous speed (of an electron/ positron), measured along any 
Cartesian axis, is always c±  [1]. This is because Dirac’s speed operators (the !c s) do 
not commute either with the Hamiltonian or with each other and have only the 
eigenvalues c± . So, keeping in mind that the equations (7.16/17) represent a cloud of 
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charged particles as an idealized, continuous, classical fluid, the equations (7.21) may not 
be as contrary as might first appear. Note that the theta equation is a quantum equation; it 
may therefore appear in quantum mechanical arguments along side Dirac’s equation. 
 

If, of course, 0=j  and 0=!  then the space is empty of charge, (7.17c/d) require 
that the j

a  satisfy the wave equation and (7.15) is satisfied trivially; the corresponding 
particles must be photons. Keeping in mind that, the original rudimentary classical 
model, from which the constraints are derived, has structureless point particles moving in 
an otherwise empty space, it seems the assumptions 0=j  and 0=!  are appropriate. The 
Maxwell equations with 0!j  and 0!"  appear to be essentially classical. 

 
 
8. Notes On The ANPA References 
 
[19] This reference is a general paper on time. It does not consider the relativistic 
properties of time because to do so, before an ANPA audience, would be to ‘carry coals 
to Newcastle’! It does, however, consider quantum time and the phenomenon of chaos. 
 
[20] The work on Constraints Theory, together with its implications, was first begun in 
this reference. No formal proof, that constraint 1 requires the Hamiltonian to be a 
polynomial of order not exceeding 2, is given; but examples strongly suggest this. 
Various proofs have been tried. The proof given in Section 3 is favoured because it does 
not assume, ab initio, that H  is a polynomial. The Theta Equation is not derived in [20] 
but, again, examples foreshadow it. 
 
[21] Much of the work described above is sketched in graphical form along with some 
textual argument. 
 
[22] This sprawling paper is a flawed effort to explain some of the structures of CM by 
assuming that the measurement of rate is an averaging process. Dirac [1] invoked this 
idea, successfully, to explain how his velocity operators (eigenvalues c± ) give rise to 
observations subject to the classical SR relations governing velocity and momentum. 
These notions pertain to Constraints Theory because it can be shown that linear 
Hamiltonians, with constant matrix coefficients (of finite order), satisfy the constraints to, 
at least, level 3. The matrices, of course, have discrete eigenvalues; and all but one of 
them are velocity operators. Considerable effort has been focussed, subsequent to [22],  
on related topics. But the results are not definite; and so they are not reported here. Some 
of the work on linear Hamiltonians is given in drafts 1 and 2 of An Overview of 
Constraints Theory (progenitors of this document). The references [16,17,18] appear in 
these documents. 
 
 
9. Linear Hamiltonians With Matrix Coefficients- A New Chapter? 
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 The only definite result concerning linear Hamiltonians, with constant matrix 
coefficients, is that they satisfy the constraints, without caveats, at least to level 3. They 
are of importance because the Dirac equation derives from a linear Hamiltonian with 
matrix coefficients that are either  functions of the coordinates or constant. One 
complication that arises, in the investigation of such Hamiltonians in Constraint Theory, 
is that, ostensibly, every matrix coefficient is a candidate for ! . To study them is to take 
us outside our self-imposed remit of deriving CM from QM. Nevertheless, there are 
partial results. A topic that needs investigation in relation to Hamiltonians, in general, and 
linear Hamiltonians, particular, is that of constants of the motion. For example, the 
angular momentum operators (see Section 2.10  above) are constants of the Dirac 
Hamiltonian only if spin operators are added. The significance of constants of the motion 
in QM is that, because they commute with the Hamiltonian, they can be averaged, in the 
course of measurement, for an indefinite time. They therefore exhibit classical 
permanence and structure. 
 
 Perhaps, if we can get together enough definite results, we should add a chapter 
on linear Hamiltonians with matrix coefficients. My feeling is that, although slippery, 
they may provide, through Constraint Theory, a strong explanation of the physical 
importance of Euclidean 3-space and Minkowskian 4-space; see Section 6.2  above. 
 
A. M. Deakin   18/11/2008 
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